ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Electronic Resource
    Electronic Resource
    Springer
    Journal of muscle research and cell motility 11 (1990), S. 191-202 
    ISSN: 1573-2657
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology , Medicine
    Notes: Summary The striated muscle tropomyosin-enriched microfilaments were isolated from developing musclesin ovo by the previously described method with a monoclonal antibody against striated muscle isoforms of tropomyosin (Lin & Lin, 1986). Two-dimensional gel analysis of the isolated microfilaments from developing heart, thigh and breast muscles revealed the coexistence of non-muscle isoforms of tropomyosin and actin throughout all stages of embryogenesis. A small but significant amount of skeletal muscle isoforms (α, β) of tropomyosins and their phosphorylated forms was detected in the microfilaments isolated from hearts of 6–15-day-old embryos. These skeletal isoforms of tropomyosins disappeared after this stage of embryogenesis. In addition, we also detected both embryonic and adult isoforms of troponin T in early developing hearts. In developing thigh and breast muscles, the presence of non-muscle tropomyosin isoforms 2, 3a and 3b in the isolated microfilaments was apparent. The contents of tropomyosin isoform 2 were decreased with development and this non-muscle isoform completely disappeared at the 15th day of embryogenesis. On the other hand, the non-muscle tropomyosin isoforms 3a and 3b were present throughout all stages of development. Double-label immunofluorescence microscopy with monoclonal CH1 (anti-striated muscle isoforms of tropomyosin) and CGβ6 (anti-non-muscle isoforms of tropomyosin) on the isolated, glycerinated skeletal and cardiac muscle cells of 10-day-old or 13-day-old embryos confirmed the colocalization of muscle and non-muscle isoforms of tropomyosins within the same cells. These results suggest that different isoforms of actin and tropomyosin can assemble into a class of microfilaments (i.e. striated muscle tropomyosin-enriched microfilaments)in ovo, which may transform into the thin filaments of mature muscle cells.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    ISSN: 1432-0878
    Keywords: Fibrillogenesis ; Muscle, cardiac ; Myosin ; Actin ; Immunofluorescence microscopy ; Myofibrils ; Domestic fowl
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology , Medicine
    Notes: Summary Myofibrillogenesis was studied in cultured chick cardiomyocytes using indirect immunofluorescence microscopy and antibodies against α- and γ-actin, muscle and nonmuscle tropomyosin, muscle myosin, and titin. Initially, cardiomyocytes, devoid of myofibrils, developed variable numbers of stress fiber-like structures with uniform staining for anti-muscle and nonmuscle actin and tropomyosin, and diffuse, weak staining with anti-titin. Anti-myosin labeled bundles of filaments that exhibited variable degrees of association with the stress fiber-like structures. Myofibrillogenesis occurred with a progressive, and generally simultaneous, longitudinal reorganization of stress fiber-like structures to form primitive sarcomeric units. Titin appeared to attain its mature pattern before the other major contractile proteins. Changes in the staining patterns of actin, tropomyosin, and myosin as myofibrils matured were interpreted as due to longitudinal filament alignment occurring before ordering in the axial direction. Non-muscle actin and tropomyosin were found with sarcomeric periodicity in the initial stages of sarcomere myofibrillogenesis, although their staining patterns were not identical. The localization of the “sarcomeric” proteins α-actin and muscle tropomyosin in stress fiber-like structures and the incorporation of non-muscle proteins in the initial stages of sarcomere organization bring into question the meaning of “sarcomeric” proteins in regard to myofibrillogenesis.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    Electronic Resource
    Electronic Resource
    Springer
    Journal of molecular histology 28 (1996), S. 469-476 
    ISSN: 1573-6865
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology , Medicine
    Notes: Summary Using a xanthophore cytoskeletal preparation as immunogen, we have produced a monoclonal antibody, A2, which recognized a 160 kDa protein in 3T3 fibroblasts. This protein makes up a cytoplasmic filamentous system, which colocalizes with vimentin filaments. When microtubules and actin filaments are dissolved by high salt extraction, staining with antibody A2 is unaffected. Immunoblot analysis confirms that the 160 kDa protein is co-isolated with vimentin duringin vivo high salt extraction. Following vinblastine treatment, both the 160 kDa protein and vimentin become localized to perinuclear caps, as do other intermediate filaments and their associated proteins; after vinblastine removal, the immunostaining produced by A2 becomes filamentous. Immunoelectron microscopy demonstrates that antibody A2 stains a filament system with a diameter of about 10 nm. Our observations suggest that the 160 kDa protein may be a new vimentin-associated protein which differs from the intermediate filament-associated proteins previously reported, and is widely distributed in several cell types.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
    Electronic Resource
    Electronic Resource
    New York, N.Y. : Wiley-Blackwell
    Journal of Cellular Biochemistry 67 (1997), S. 84-91 
    ISSN: 0730-2312
    Keywords: vimentin-associated protein ; capsule of lipid droplet ; vimentin cage ; adipocyte ; Life and Medical Sciences ; Cell & Developmental Biology
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Biology , Chemistry and Pharmacology , Medicine
    Notes: We have found that the antibody A2, a marker for the capsule of steroidogenic lipid droplets, reacts with an intermediate filament-associated protein, P200, in 3T3-L1 preadipocytes. Supporting evidence came from the colocalization pattern of P200 with vimentin in double label experiments. The association of P200 with vimentin was further confirmed by its copurification with vimentin after high salt extraction and colocalization of these two proteins in high salt-extracted and vinblastine-treated cells. In preadipocytes this protein was distributed on the vimentin filament network. At the early stage of adipose conversion, this protein was found to encircle nascent lipid droplets ranging from 0.1 to 0.2 μm, accompanied with a decreased distribution on the vimentin filament system. This infers a possible translocation of P200 from the vimentin filaments to the droplet surface. Meanwhile, the vimentin filaments remained in a normal distribution in the cytoplasm and were apparently not associated with the nascent droplet. The association of vimentin filaments to droplet surfaces became prominent in lipid droplets larger than 0.2 μm, forming a typical vimentin cage. Immunogold staining also confirmed the translocation of P200 immunoreactivity from the droplet surface to the vimentin cage. The relocation of P200 from the cytoplasmic vimentin filaments to the droplet surface prior to the formation of the vimentin cage, as well as the reorganization of this protein in the vimentin cage, suggests a stabilizing role in the lipid droplet formation and an inducing function of this protein in the formation of the vimentin cage. J. Cell. Biochem. 67:84-91, 1997. © 1997 Wiley-Liss, Inc.
    Additional Material: 5 Ill.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 5
    Electronic Resource
    Electronic Resource
    New York, N.Y. : Wiley-Blackwell
    Journal of Cellular Biochemistry 66 (1997), S. 43-53 
    ISSN: 0730-2312
    Keywords: rho A ; C3 exoenzyme ; focal adhesion ; costamere ; myofibrillogenesis ; cardiomyocyte ; Life and Medical Sciences ; Cell & Developmental Biology
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Biology , Chemistry and Pharmacology , Medicine
    Notes: The aim of this study was to provide morphological evidence for the presence of rho A protein in developing cardiomyocytes and to investigate its possible role in myofibrillogenesis. Immunostaining with a monoclonal anti-rho antibody gave a diffuse pattern in the cytosol of cultured cardiomyocytes. Introduction of C3 exoenzyme into the cells by electroporation was used to inactivate rho A protein by ADP-ribosylation. An immunostaining with anti-vinculin, anti-talin, and anti-integrin antibodies showed the focal adhesions in electroporation control cardiomyocytes to be evenly distributed in the ventral sarcolemma; the costameric structure was also detected using these antibodies. In contrast, in C3 exoenzyme treated cells, focal adhesions were disassembled and costamere were absent; in addition, β-actin-positive, non-striated fibrils were lost and assembly of M-protein, titin, and α-actinin into myofibrils was poor, as shown by diffuse and filamentous staining pattern. C3 exoenzyme treatment had a less marked effect on mature cardiomyocytes than on immature cells; in this case, cells became distorted and few myofibrils were seen. The intensity of anti-phosphotyrosine antibody staining of the focal adhesion was also decreased or diffuse in C3 exoenzyme-treated cardiomyocytes, suggesting dephosphorylation of focal adhesion components. We therefore conclude that small G protein rho A plays an important role in myofibril assembly in cardiomyocytes. J. Cell. Biochem. 66:43-53, 1997. © 1997 Wiley-Liss, Inc.
    Additional Material: 8 Ill.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 6
    Electronic Resource
    Electronic Resource
    New York, N.Y. : Wiley-Blackwell
    Journal of Cellular Biochemistry 65 (1997), S. 67-74 
    ISSN: 0730-2312
    Keywords: capsule detachment ; lipid droplet ; adrenal cell ; signaling pathway ; immunocytochemistry ; Life and Medical Sciences ; Cell & Developmental Biology
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Biology , Chemistry and Pharmacology , Medicine
    Notes: In a previous study, we used a monoclonal antibody, A2, to demonstrate the presence of the lipid droplet-specific capsule in adrenocortical cells and the stimulation of steroid secretion with adrenocorticotrophic hormone (ACTH), resulting in the detachment of this capsule from the droplet surface into the cytosol. To investigate the signaling pathway for this event, we tested the role of adenylate cyclase, cAMP, and protein kinases A and C (PKA and PKC) in this response. ACTH-induced decapsulation of lipid droplets was blocked by either adenylate cyclase inhibitor or PKA inhibitor and stimulated by Bt2cAMP. We conclude that the signaling mechanism involved in lipid droplet decapsulation is the cascade consisting of adenylate cyclase activation, cAMP elevation, and subsequent PKA activation. Furthermore, the cytosolic detached capsular protein was able to relocate to the lipid droplet surface on cessation of ACTH or Bt2cAMP stimulation. In addition to PKA-mediated decapsulation, inhibition of PKC by calphostin C alone was enough to induce decapsulation, a process that was independent of PKA activity, whereas activation of PKC could prevent Bt2cAMP-induced decapsulation. A cAMP radioimmunoassay also confirmed that ACTH caused a marked increase in intracellular levels of cAMP, while PMA or calphostin C caused no significant changes. We conclude that PKA and PKC are reciprocally operated to regulate the decapsulation of lipid droplets, the same mechanism adopted in steroidogenesis. A time-course study also indicates that decapsulation of lipid droplets was accompanied by detectable changes in the size and the area of lipid droplets upon the stimulation of Bt2cAMP or calphostin C, implying a possible coupling between the capsule detachment and steroidogenesis. J. Cell. Biochem. 65:67-74. © 1997 Wiley-Liss, Inc.
    Additional Material: 5 Ill.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 7
    ISSN: 0730-2312
    Keywords: Cordyceps sinensis ; adrenal cells ; steroidogenesis ; signal pathway ; PKC ; Life and Medical Sciences ; Cell & Developmental Biology
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Biology , Chemistry and Pharmacology , Medicine
    Notes: Cordyceps sinensiscontains a factor that stimulates corticosteroid production in the animal model. However, it is not known whether this drug acts directly on the adrenal glands or indirectly via the hypothalamus-pituitary axis. In the present study, we used primary rat adrenal cell cultures to investigate the pharmacological function of a water-soluble extract of Cordyceps sinensis(CS) and thesignaling pathway involved. Radioimmunoassay of corticosterone indicated that the amount of corticosterone produced by adrenal cells is increased in a positively dose-dependent manner by CS, reaching a maximun at 25 μg/ml. This stimulating effect was seen 1 h after CS treatment and was maintained for up to 24 h. Concomitantly, the lipid droplets in these cells became small and fewer in number. Immunostaining with a monoclonal antibody, A2, a specific marker for the lipid droplet capsule, demonstrated that detachment of the capsule from the lipid droplet occurs in response to CS application and that the period required for decapsulation is inversely related to the concentration of CS applied. The mechanism of CS-induced steroidogenesis is apparently different from that for ACTH, since intracellular cAMP levels were not increased in CS-treated cells. However, combined application with calphostin C, a PKC inhibitor, completely blocked the effect of CS on steroidogenesis, suggesting that activation of PKC may be responsible for the CS-induced steroidogenesis. J. Cell. Biochem. 69:483-489, 1998. © 1998 Wiley-Liss, Inc.
    Additional Material: 7 Ill.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 8
    Electronic Resource
    Electronic Resource
    New York, N.Y. : Wiley-Blackwell
    Journal of Cellular Biochemistry 70 (1998), S. 38-48 
    ISSN: 0730-2312
    Keywords: GABAA receptor ; N-glycosylation ; radioligand binding ; in situ trypsinization ; galactosylation ; mannosylation ; immunoblotting ; immunocytochemistry ; Life and Medical Sciences ; Cell & Developmental Biology
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Biology , Chemistry and Pharmacology , Medicine
    Notes: The significance of N-linked glycosylation and oligosaccharide processing was examined for the expression of γ-aminobutyric acidA receptor (GABAAR) in cultured neurons derived from chick embryo brains. Incubation of cultures with 5 μg/ml of tunicamycin for 24 h blocked the binding of 3H-flunitrazepam and 3H-muscimol, probes for the benzodiazepine and GABA sites on the receptor, by about 20% and 28%, respectively. The loss of ligand binding was due to a reduction in the number of binding sites with no significant changes in receptor affinity. Light microscopic immunocytochemistry also revealed that the treatment reduced approximately 13% of the intensity of GABAAR immunoreactivity in the neuronal somata. Furthermore, the fraction of intracellular receptors was decreased to 24% from 34% of control in the presence of the agent, as revealed by trypsinization of cells in situ followed by 3H-flunitrazepam binding. The molecular weight of the receptor subunit protein was lowered around 0.5 kDa after tunicamycin treatment, in accordance with that following N-glycosidase F digestion, indicating the blockade of N-linked glycosylation of GABAAR by tunicamycin. Moreover, intense inhibitions of 91% and 44%, respectively, were detected to the general galactosylation and mannosylation in the tunicamycin-treated cells, whereas the protein synthesis was hindered by 13%, through assaying the incorporation of 3H-sugars and 3H-leucine. Nevertheless, treatment with castanospermine or swainsonine (10 μg/ml, 24 h), inhibitors to maturation of oligosaccharides, failed to produce significant changes in the ligand binding. In addition, in situ hybridization analysis showed that these three inhibitors did not perturb the mRNA of GABAAR α1-subunit. The data suggest that tunicamycin causes the downregulation and subcellular redistribution of GABAAR by producing irregularly glycosylated receptors and modifying their localization. Both galactosylation and mannosylation during the process of N-linked glycosylation may be important for the functional expression and intracellular transport of GABAAR. J. Cell. Biochem. 70:38-48, 1998. © 1998 Wiley-Liss, Inc.
    Additional Material: 6 Ill.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 9
    ISSN: 0730-2312
    Keywords: cadherin ; catenins ; thyroid carcinoma cell ; epithelial cell ; cell-cell adhesion ; Life and Medical Sciences ; Cell & Developmental Biology
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Biology , Chemistry and Pharmacology , Medicine
    Notes: E-cadherin is the major cell-cell adhesion molecule expressed by epithelial cells. Cadherins form a complex with three cytoplasmic proteins, α-, β-, and γ-catenin, and the interaction between them is crucial for anchoring the actin cytoskeleton to the intercellular adherens junctions. The invasive behavior of cancer cells has been attributed to a dysfunction of these molecules. In this study, we examined the distribution of the cadherin-catenin complex in a Chinese human thyroid cancer cell line, CGTH W-2, compared with that in normal human thyroid epithelial cells. In the normal cells, using immunofluorescence staining, E-cadherin and α-, β-, and γ-catenin were found to be localized at the intercellular junction and appeared as 135, 102, 90, and 80 kD proteins on Western blots. In CGTH W-2 cells, no E-cadherin and γ-catenin immunoreactivity was detected by immunofluorescence or Western blotting; α- and β-catenin were detected as 102 and 90 kD proteins on blots but gave a diffuse cytoplasmic immunofluorescence staining pattern in most cells, while β-catenin was also distributed throughout the cytoplasm in most cells but was found at the cell junction in some, where it colocalized with α-actinin. The present data indicate that the loss of cell adhesiveness in these cancer cells may be due to incomplete assembly of the cadherin-catenin complex at the cell junction. However, this defect did not affect the linkage of actin bundles to vinculin-enriched intercellular junctions. J. Cell. Biochem. 70:330-337, 1998. © 1998 Wiley-Liss, Inc.
    Additional Material: 5 Ill.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 10
    Electronic Resource
    Electronic Resource
    New York, N.Y. : Wiley-Blackwell
    Journal of Cellular Biochemistry 71 (1998), S. 82-95 
    ISSN: 0730-2312
    Keywords: M-line proteins ; titin ; expression ; antibody perturbation ; immunocytochemistry ; cardiomyocyte ; Life and Medical Sciences ; Cell & Developmental Biology
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Biology , Chemistry and Pharmacology , Medicine
    Notes: A rat polyclonal anti-M-line protein antiserum and three mouse monoclonal anti-titin antibodies (E2, F3, and A12) were used to study the spatiotemporal relationship between M-line proteins and titin during myofibril assembly in cultured chicken cardiomyocytes by immunofluorescence microscopy. In day 2 cultures, M-line proteins and titin were detected as punctate staining in most cardiomyocytes, which possessed many nonstriated fibrils. At a late stage (day 3 cultures), M-line proteins were incorporated into dot-like structures along nonstriated fibrils, while titin staining was continuous on these structures. As development progressed, M-line proteins were registered in periodic pattern in the mid-A band. In cardiomyocytes from day 5 cultures, the titin bands were separated by an unstained region, and achieved their adult doublet pattern. Thus, the organization of titin in the sarcomere appears to occur later than that of M-line proteins in the M-line. Our morphological data indicate that the early registration of M-line proteins in primitive myofibrils may guide titin filament alignment via interaction between M-line proteins and titin. In order to investigate the role of M-line proteins in the assembly of titin filaments, anti-M-line protein or anti-titin antibodies were introduced into cultured cardiomyocytes by electroporation to functionally bind the respective proteins, and the profile of myofibril assembly was examined. Cardiomyocytes from day 2-3 cultures with incorporated anti-M-line protein antibodies became shrunk, and exhibited defective myofibrillar assembly, as shown by the failure of titin to assemble into a typical sarcomeric pattern. Incorporation of anti-titin antibody E2, which recognizes the M-line end domain of titin, resulted in the failure of M-line proteins organized into the M-line structure, as shown by random, sporadic staining with anti-M-line protein antibody. These studies confirm the essential role of M-line proteins in the organization of titin filaments in the sarcomere and that the interaction between titin and M-line proteins is crucial to the formation of the M-line structure. J. Cell. Biochem. 71:82-95, 1998. © 1998 Wiley-Liss, Inc.
    Additional Material: 9 Ill.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...