ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Publication Date: 2019
    Description: In recent years, wireless sensor networks (WSNs) have experienced a significant growth as a fundamental part of the Internet of Things (IoT). WSNs nodes constitute part of the end-devices present in the IoT, and in many cases location data of these devices is expected by IoT applications. For this reason, many localization algorithms for WSNs have been developed in the last years, although in most cases the results provided are obtained from simulations that do not consider the resource constraints of the end-devices. Therefore, in this work we present an experimental evaluation of a received signal strength indicator (RSSI)-based localization algorithm implemented on IoT end-devices, comparing its results with those obtained from simulations. We have implemented the fuzzy ring-overlapping range-free (FRORF) algorithm with some modifications to make its operation feasible on resource-constrained devices. Multiple tests have been carried out to obtain the localization accuracy data in three different scenarios, showing the difference between simulation and real results. While the overall behaviour is similar in simulations and in real tests, important differences can be observed attending to quantitative accuracy results. In addition, the execution time of the algorithm running in the nodes has been evaluated. It ranges from less than 10 ms to more than 300 ms depending on the fuzzification level, which demonstrates the importance of evaluating localization algorithms in real nodes to prevent the introduction of large overheads that may not be affordable by resource-constrained nodes.
    Electronic ISSN: 1424-8220
    Topics: Chemistry and Pharmacology , Electrical Engineering, Measurement and Control Technology
    Published by MDPI
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2019
    Description: The emergence and spread of Internet of Things (IoT) technologies along with the edge computing paradigm has led to an increase in the computational load on sensor end-devices. These devices are now expected to provide high-level information instead of just raw sensor measurements. Therefore, the processing tasks must share the processor time with the communication tasks, and both of them may have strict timing constraints. In this work, we present an empirical study, from the edge computing perspective, of the process management carried out by an IoT Operating System (OS), showing the cross-influence between the processing and communication tasks in end-devices. We have conducted multiple tests in two real scenarios with a specific OS and a set of wireless protocols. In these tests, we have varied the processing and communication tasks timing parameters, as well as their assigned priority levels. The results obtained from these tests demonstrate that there is a close relationship between the characteristics of the processing tasks and the communication performance, especially when the processing computational load is high. In addition, these results also show that the computational load is not the only factor responsible for the communication performance degradation, as the relationship between the processing tasks and the communication protocols timing parameters also plays a role. These conclusions should be taken into account for future OSs and protocol developments.
    Electronic ISSN: 1424-8220
    Topics: Chemistry and Pharmacology , Electrical Engineering, Measurement and Control Technology
    Published by MDPI
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2018
    Description: The explosion of the Internet of Things has dramatically increased the data load on networks that cannot indefinitely increment their capacity to support these new services. Edge computing is a viable approach to fuse and process data on sensor platforms so that information can be created locally. However, the integration of complex heterogeneous sensors producing a great amount of diverse data opens new challenges to be faced. Rather than generating usable data straight away, complex sensors demand prior calculations to supply meaningful information. In addition, the integration of complex sensors in real applications requires a coordinated development from hardware and software teams that need a common framework to reduce development times. In this work, we present an edge and fog computing platform capable of providing seamless integration of complex sensors, with the implementation of an efficient data fusion strategy. It uses a symbiotic hardware/software design approach based on a novel messaging system running on a modular hardware platform. We have applied this platform to integrate Bluetooth vehicle identifiers and radar counters in a specific mobility use case, which exhibits an effective end-to-end integration using the proposed solution.
    Electronic ISSN: 1424-8220
    Topics: Chemistry and Pharmacology , Electrical Engineering, Measurement and Control Technology
    Published by MDPI
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
    Publication Date: 2019
    Description: The increase in the number of mobile and Internet of Things (IoT) devices, along with the demands of new applications and services, represents an important challenge in terms of spectral coexistence. As a result, these devices are now expected to make an efficient and dynamic use of the spectrum, and to provide processed information instead of simple raw sensor measurements. These communication and processing requirements have direct implications on the architecture of the systems. In this work, we present MIGOU, a wireless experimental platform that has been designed to address these challenges from the perspective of resource-constrained devices, such as wireless sensor nodes or IoT end-devices. At the radio level, the platform can operate both as a software-defined radio and as a traditional highly integrated radio transceiver, which demands less node resources. For the processing tasks, it relies on a system-on-a-chip that integrates an ARM Cortex-M3 processor, and a flash-based FPGA fabric, where high-speed processing tasks can be offloaded. The power consumption of the platform has been measured in the different modes of operation. In addition, these hardware features and power measurements have been compared with those of other representative platforms. The results obtained confirm that a state-of-the-art tradeoff between hardware flexibility and energy efficiency has been achieved. These characteristics will allow for the development of appropriate solutions to current end-devices’ challenges and to test them in real scenarios.
    Electronic ISSN: 1424-8220
    Topics: Chemistry and Pharmacology , Electrical Engineering, Measurement and Control Technology
    Published by MDPI
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 5
  • 6
  • 7
    Publication Date: 2019-11-15
    Description: The increase in the number of mobile and Internet of Things (IoT) devices, along with the demands of new applications and services, represents an important challenge in terms of spectral coexistence. As a result, these devices are now expected to make an efficient and dynamic use of the spectrum, and to provide processed information instead of simple raw sensor measurements. These communication and processing requirements have direct implications on the architecture of the systems. In this work, we present MIGOU, a wireless experimental platform that has been designed to address these challenges from the perspective of resource-constrained devices, such as wireless sensor nodes or IoT end-devices. At the radio level, the platform can operate both as a software-defined radio and as a traditional highly integrated radio transceiver, which demands less node resources. For the processing tasks, it relies on a system-on-a-chip that integrates an ARM Cortex-M3 processor, and a flash-based FPGA fabric, where high-speed processing tasks can be offloaded. The power consumption of the platform has been measured in the different modes of operation. In addition, these hardware features and power measurements have been compared with those of other representative platforms. The results obtained confirm that a state-of-the-art tradeoff between hardware flexibility and energy efficiency has been achieved. These characteristics will allow for the development of appropriate solutions to current end-devices’ challenges and to test them in real scenarios.
    Electronic ISSN: 1424-8220
    Topics: Chemistry and Pharmacology , Electrical Engineering, Measurement and Control Technology
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 8
    Publication Date: 2018-10-25
    Description: The explosion of the Internet of Things has dramatically increased the data load on networks that cannot indefinitely increment their capacity to support these new services. Edge computing is a viable approach to fuse and process data on sensor platforms so that information can be created locally. However, the integration of complex heterogeneous sensors producing a great amount of diverse data opens new challenges to be faced. Rather than generating usable data straight away, complex sensors demand prior calculations to supply meaningful information. In addition, the integration of complex sensors in real applications requires a coordinated development from hardware and software teams that need a common framework to reduce development times. In this work, we present an edge and fog computing platform capable of providing seamless integration of complex sensors, with the implementation of an efficient data fusion strategy. It uses a symbiotic hardware/software design approach based on a novel messaging system running on a modular hardware platform. We have applied this platform to integrate Bluetooth vehicle identifiers and radar counters in a specific mobility use case, which exhibits an effective end-to-end integration using the proposed solution.
    Electronic ISSN: 1424-8220
    Topics: Chemistry and Pharmacology , Electrical Engineering, Measurement and Control Technology
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 9
    Publication Date: 2019-02-16
    Description: The emergence and spread of Internet of Things (IoT) technologies along with the edge computing paradigm has led to an increase in the computational load on sensor end-devices. These devices are now expected to provide high-level information instead of just raw sensor measurements. Therefore, the processing tasks must share the processor time with the communication tasks, and both of them may have strict timing constraints. In this work, we present an empirical study, from the edge computing perspective, of the process management carried out by an IoT Operating System (OS), showing the cross-influence between the processing and communication tasks in end-devices. We have conducted multiple tests in two real scenarios with a specific OS and a set of wireless protocols. In these tests, we have varied the processing and communication tasks timing parameters, as well as their assigned priority levels. The results obtained from these tests demonstrate that there is a close relationship between the characteristics of the processing tasks and the communication performance, especially when the processing computational load is high. In addition, these results also show that the computational load is not the only factor responsible for the communication performance degradation, as the relationship between the processing tasks and the communication protocols timing parameters also plays a role. These conclusions should be taken into account for future OSs and protocol developments.
    Electronic ISSN: 1424-8220
    Topics: Chemistry and Pharmacology , Electrical Engineering, Measurement and Control Technology
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 10
    Publication Date: 2019-09-12
    Description: In recent years, wireless sensor networks (WSNs) have experienced a significant growth as a fundamental part of the Internet of Things (IoT). WSNs nodes constitute part of the end-devices present in the IoT, and in many cases location data of these devices is expected by IoT applications. For this reason, many localization algorithms for WSNs have been developed in the last years, although in most cases the results provided are obtained from simulations that do not consider the resource constraints of the end-devices. Therefore, in this work we present an experimental evaluation of a received signal strength indicator (RSSI)-based localization algorithm implemented on IoT end-devices, comparing its results with those obtained from simulations. We have implemented the fuzzy ring-overlapping range-free (FRORF) algorithm with some modifications to make its operation feasible on resource-constrained devices. Multiple tests have been carried out to obtain the localization accuracy data in three different scenarios, showing the difference between simulation and real results. While the overall behaviour is similar in simulations and in real tests, important differences can be observed attending to quantitative accuracy results. In addition, the execution time of the algorithm running in the nodes has been evaluated. It ranges from less than 10 ms to more than 300 ms depending on the fuzzification level, which demonstrates the importance of evaluating localization algorithms in real nodes to prevent the introduction of large overheads that may not be affordable by resource-constrained nodes.
    Electronic ISSN: 1424-8220
    Topics: Chemistry and Pharmacology , Electrical Engineering, Measurement and Control Technology
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...