ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Publication Date: 2004-12-03
    Description: An automated method has been developed for performing navigation assessment on satellite-based Earth sensor data. The method utilizes islands as targets which can be readily located in the sensor data and identified with reference locations. The essential elements are an algorithm for classifying the sensor data according to source, a reference catalog of island locations, and a robust pattern-matching algorithm for island identification. The algorithms were developed and tested for the Sea-viewing Wide Field-of-view Sensor (SeaWiFS), an ocean color sensor. This method will allow navigation error statistics to be automatically generated for large numbers of points, supporting analysis over large spatial and temporal ranges.
    Keywords: Oceanography
    Type: Image Registration Workshop Proceedings; 57-80; NASA/CP-1998-206853
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2013-08-31
    Description: An automated method for developing and assessing spacecraft and instrument command schedules is presented for the Sea-viewing Wide Field-of-view Sensor (SeaWiFS) project. SeaWiFS is to be carried on the polar-orbiting SeaStar satellite in 1995. The primary goal of the SeaWiFS mission is to provide global ocean chlorophyll concentrations every four days by employing onboard recorders and a twice-a-day data downlink schedule. Global Area Coverage (GAC) data with about 4.5 km resolution will be used to produce the global coverage. Higher resolution (1.1 km resolution) Local Area Coverage (LAC) data will also be recorded to calibrate the sensor. In addition, LAC will be continuously transmitted from the satellite and received by High Resolution Picture Transmission (HRPT) stations. The methods used to generate commands for SeaWiFS employ numerous hierarchical checks as a means of maximizing coverage of the Earth's surface and fulfilling the LAC data requirements. The software code is modularized and written in Fortran with constructs to mirror the pre-defined mission rules. The overall method is specifically developed for low orbit Earth-observing satellites with finite onboard recording capabilities and regularly scheduled data downlinks. Two software packages using the Interactive Data Language (IDL) for graphically displaying and verifying the resultant command decisions are presented. Displays can be generated which show portions of the Earth viewed by the sensor and spacecraft sub-orbital locations during onboard calibration activities. An IDL-based interactive method of selecting and testing LAC targets and calibration activities for command generation is also discussed.
    Keywords: SPACE COMMUNICATIONS, SPACECRAFT COMMUNICATIONS, COMMAND AND TRACKING
    Type: Third International Symposium on Space Mission Operations and Ground Data Systems, Part 1; p 607-614
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2013-08-29
    Description: We report on the lunar and solar measurements used to determine the changes in the radiometric sensitivity of the Sea-viewing Wide Field-of-view Sensor (SeaWiFS). Radiometric sensitivity is defined as the output from the instrument (or from one of the instrument bands) per unit spectral radiance at the instrument's input aperture. Knowledge of the long-term repeatability of the SeaWiFS measurements is crucial to maintaining the quality of the ocean scenes derived from measurements by the instrument. For SeaWiFS bands 1 through 6 (412 nm through 670 rim), the change in radiometric sensitivity is less than 0.2% for the period from November 1997 through November 1998. For band 7 (765 nm), the change is about 1.5%, and for band 8 (865 nm) about 5%. The rates of change of bands 7 and 8, which were linear with time for the first eight months of lunar measurements, are now slowing. The scatter in the data points about the trend lines in this analysis is less than 0.3% for all eight SeaWiFS bands. These results are based on monthly measurements of the moon. Daily solar measurements using an onboard diffuser show that the radiometric sensitivities of the SeaWiFS bands have changed smoothly during the time intervals between lunar measurements. Since SeaWiFS measurements have continued past November 1998, the results presented here are considered as a snapshot of the instrument performance as of that date.
    Keywords: Oceanography
    Type: Applied Optics
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
    Publication Date: 2019-04-04
    Description: Observations of the Moon provide a primary technique for the on-orbit cross calibration of Earth remote sensing instruments. Monthly lunar observations are major components of the on-orbit calibration strategies of SeaWiFS and MODIS. SeaWiFS has collected more than 132 low phase angle and 59 high phase angle lunar observations over 12 years, Terra MODIS has collected more than 82 scheduled and 297 unscheduled lunar observations over 9 years, and Aqua MODIS has collected more than 61 scheduled and 171 unscheduled lunar observations over 7 years. The NASA Ocean Biology Processing Group s Calibration and Validation Team and the NASA MODIS Characterization Support Team use the USGS RObotic Lunar Observatory (ROLO) photometric model of the Moon to compare these time series of lunar observations over time and varying observing geometries. The cross calibration results show that Terra MODIS and Aqua MODIS agree, band-to-band, at the 1-3% level, while SeaWiFS and either MODIS instrument agree at the 3-8% level. The combined uncertainties of these comparisons are 1.3% for Terra and Aqua MODIS, 1.4% for SeaWiFS and Terra MODIS, and 1.3% for SeaWiFS and Aqua MODIS. Any residual phase dependence in the ROLO model, based on these observations, is less than 1.7% over the phase angle range of -80deg to -6deg and +5deg to +82deg . The lunar cross calibration of SeaWiFS, Terra MODIS, and Aqua MODIS is consistent with the vicarious calibration of ocean color products for these instruments, with the vicarious gains mitigating the calibration biases for the ocean color bands.
    Keywords: Lunar and Planetary Science and Exploration
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 5
    Publication Date: 2019-06-28
    Description: This document provides five brief reports that address several quality control procedures under the auspices of the Calibration and Validation Element (CVE) within the Sea-viewing Wide Field-of-view Sensor (SeaWiFS) Project. Chapter 1 describes analyses of the 32 sensor engineering telemetry streams. Anomalies in any of the values may impact sensor performance in direct or indirect ways. The analyses are primarily examinations of parameter time series combined with statistical methods such as auto- and cross-correlation functions. Chapter 2 describes how the various onboard (solar and lunar) and vicarious (in situ) calibration data will be analyzed to quantify sensor degradation, if present. The analyses also include methods for detecting the influence of charged particles on sensor performance such as might be expected in the South Atlantic Anomaly (SAA). Chapter 3 discusses the quality control of the ancillary environmental data that are routinely received from other agencies or projects which are used in the atmospheric correction algorithm (total ozone, surface wind velocity, and surface pressure; surface relative humidity is also obtained, but is not used in the initial operational algorithm). Chapter 4 explains the procedures for screening level-, level-2, and level-3 products. These quality control operations incorporate both automated and interactive procedures which check for file format errors (all levels), navigation offsets (level-1), mask and flag performance (level-2), and product anomalies (all levels). Finally, Chapter 5 discusses the match-up data set development for comparing SeaWiFS level-2 derived products with in situ observations, as well as the subsequent outlier analyses that will be used for evaluating error sources.
    Keywords: Oceanography
    Type: NASA-TM-104566-Vol-38 , NAS 1.15:104566-Vol-38 , Rept-96B00114
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 6
    Publication Date: 2019-06-28
    Description: This document describes the second version of the simulated SeaWiFS data set. A realistic simulated data set is essential for mission readiness preparations and can potentially assist in all phases of ground support for a future mission. The second version improves on the first version primarily through additional realism and complexity. This version incorporates a representation of virtually every aspect of the flight mission. Thus, it provides a high-fidelity data set for testing several aspects of the ground system, including data acquisition, data processing, data transfers, calibration and validation, quality control, and mission operations. The data set is constructed for a seven-day period, 25-31 March 1994. Specific features of the data set include Global Area coverage (GAC), recorded Local Area Coverage (LAC), and realtime High Resolution Picture Transmission (HRPT) data for the seven-day period. A realistic orbit, which is propagated using a Brouwer-Lyddane model with drag, is used to simulate orbit positions. The simulated data corresponds to the command schedule based on the orbit for this seven-day period. It includes total (at-satellite) radiances not only for ocean, but for land, clouds, and ice. The simulation also utilizes a high-resolution land-sea mask. It includes the April 1993 SeaWiFS spectral responses and sensor saturation responses. The simulation is formatted according to July 1993 onboard data structures, which include corresponding telemetry (instrument and spacecraft) data. The methods are described and some examples of the output are given. The instrument response functions made available in April 1993 have been used to produce the Version 2 simulated data. These response functions will change as part of the sensor improvements initiated in July-August 1993.
    Keywords: OCEANOGRAPHY
    Type: NASA-TM-104566-VOL-15 , REPT-94B00041-VOL-15 , NAS 1.15:104566-VOL-15
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 7
    Publication Date: 2019-06-28
    Description: This document provides five brief reports that address several algorithm investigations sponsored by the Calibration and Validation Team (CVT) within the Sea-viewing Wide Field-of-view Sensor (SeaWiFS) Project. This volume, therefore, has been designated as the first in a series of algorithm volumes. Chapter 1 describes the initial suite of masks, used to prevent further processing of contaminated radiometric data, and flags, which are employed to mark data whose quality (due to a variety of factors) may be suspect. In addition to providing the mask and flag algorithms, this chapter also describes the initial strategy for their implementation. Chapter 2 evaluates various strategies for the detection of clouds and ice in high latitude (polar and sub-polar regions) using Coastal Zone Color Scanner (CZCS) data. Chapter 3 presents an algorithm designed for detecting and masking coccolithosphore blooms in the open ocean. Chapter 4 outlines a proposed scheme for correcting the out-of-band response when SeaWiFS is in orbit. Chapter 5 gives a detailed description of the algorithm designed to apply sensor calibration data during the processing of level-1b data.
    Keywords: OCEANOGRAPHY
    Type: NASA-TM-104566-VOL-28 , REPT-95B00091-VOL-28 , NAS 1.15:104566-VOL-28
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 8
    Publication Date: 2019-06-28
    Description: This document provides brief reports, or case studies, on a number of investigations and data set development activities sponsored by the Calibration and Validation Team (CVT) within the Sea-viewing Wide Field-of-view Sensor (SeaWiFS) Project. Chapter 1 is a comparison with the atmospheric correction of Coastal Zone Color Scanner (CZCS) data using two independent radiative transfer formulations. Chapter 2 is a study on lunar reflectance at the SeaWiFS wavelengths which was useful in establishing the SeaWiFS lunar gain. Chapter 3 reports the results of the first ground-based solar calibration of the SeaWiFS instrument. The experiment was repeated in the fall of 1993 after the instrument was modified to reduce stray light; the results from the second experiment will be provided in the next case studies volume. Chapter 4 is a laboratory experiment using trap detectors which may be useful tools in the calibration round-robin program. Chapter 5 is the original data format evaluation study conducted in 1992 which outlines the technical criteria used in considering three candidate formats, the hierarchical data format (HDF), the common data format (CDF), and the network CDF (netCDF). Chapter 6 summarizes the meteorological data sets accumulated during the first three years of CZCS operation which are being used for initial testing of the operational SeaWiFS algorithms and systems and would be used during a second global processing of the CZCS data set. Chapter 7 describes how near-real time surface meteorological and total ozone data required for the atmospheric correction algorithm will be retrieved and processed. Finally, Chapter 8 is a comparison of surface wind products from various operational meteorological centers and field observations. Surface winds are used in the atmospheric correction scheme to estimate glint and foam radiances.
    Keywords: OCEANOGRAPHY
    Type: NASA-TM-104566-VOL-19-PT-2 , REPT-94B00115 , NAS 1.15:104566-VOL-19-PT-2
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 9
    Publication Date: 2019-06-28
    Description: An orbit prediction software package (Sea Track) was designed to assist High Resolution Picture Transmission (HRPT) stations in the acquisition of direct broadcast data from sea-viewing spacecraft. Such spacecraft will be common in the near future, with the launch of the Sea viewing Wide Field-of-view Sensor (SeaWiFS) in 1994, along with the continued Advanced Very High Resolution Radiometer (AVHRR) series on NOAA platforms. The Brouwer-Lyddane model was chosen for orbit prediction because it meets the needs of HRPT tracking accuracies, provided orbital elements can be obtained frequently (up to within 1 week). Sea Track requires elements from the U.S. Space Command (NORAD Two-Line Elements) for the satellite's initial position. Updated Two-Line Elements are routinely available from many electronic sources (some are listed in the Appendix). Sea Track is a menu-driven program that allows users to alter input and output formats. The propagation period is entered by a start date and end date with times in either Greenwich Mean Time (GMT) or local time. Antenna pointing information is provided in tabular form and includes azimuth/elevation pointing angles, sub-satellite longitude/latitude, acquisition of signal (AOS), loss of signal (LOS), pass orbit number, and other pertinent pointing information. One version of Sea Track (non-graphical) allows operation under DOS (for IBM-compatible personal computers) and UNIX (for Sun and Silicon Graphics workstations). A second, graphical, version displays orbit tracks, and azimuth-elevation for IBM-compatible PC's, but requires a VGA card and Microsoft FORTRAN.
    Keywords: COMPUTER PROGRAMMING AND SOFTWARE
    Type: NASA-RP-1331 , NAS 1.61:1331 , REPT-94B00031
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 10
    Publication Date: 2019-05-08
    Description: Lunar calibration is a commonly used method to track a climate satellite sensor's long-term radiometric stability. We present a modeling approach to examine the satellite sensor lunar observation uncertainties due to several important aspects related to the lunar image acquisition by the satellite sensor: lunar pixel shift, point spread function (PSF), lunar orientation, pitch, and oversampling rates. Our analyses can be summarized as follows: (1) The sensor observed lunar irradiance can vary due to small lunar pixel shift if the PSF is less than ideal; (2) During lunar calibration, an unstable oversampling rate due to spacecraft control will result in errors in observed lunar irradiance. A drift in oversampling rate would result in a bias in observed lunar irradiance and a random variation in oversampling rate would cause random error in lunar irradiance. Increasing the overall oversampling rates can reduce random error in observed lunar irradiance but would not change the biases in the observation; (3) Furthermore, the biases can vary when the Moon is observed at different orientations. Our results show impacts on observed lunar irradiance are on the order of 0.1 percent, which is a significant part of the overall uncertainty for a lunar irradiance measurement of a climate satellite sensor.
    Keywords: Instrumentation and Photography
    Type: GSFC-E-DAA-TN68097 , Journal of Applied Remote Sensing (ISSN 1931-3195) (e-ISSN 1931-3195); 13; 1; 014508-1-014508-15
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...