ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
Collection
Keywords
Language
  • 1
    Publication Date: 2022-10-04
    Description: The Arctic Ocean is considered a source of micronutrients to the Nordic Seas and the North Atlantic Ocean through the gateway of Fram Strait (FS). However, there is a paucity of trace element data from across the Arctic Ocean gateways, and so it remains unclear how Arctic and North Atlantic exchange shapes micronutrient availability in the two ocean basins. In 2015 and 2016, GEOTRACES cruises sampled the Barents Sea Opening (GN04, 2015) and FS (GN05, 2016) for dissolved iron (dFe), manganese (dMn), cobalt (dCo), nickel (dNi), copper (dCu) and zinc (dZn). Together with the most recent synopsis of Arctic‐Atlantic volume fluxes, the observed trace element distributions suggest that FS is the most important gateway for Arctic‐Atlantic dissolved micronutrient exchange as a consequence of Intermediate and Deep Water transport. Combining fluxes from FS and the Barents Sea Opening with estimates for Davis Strait (GN02, 2015) suggests an annual net southward flux of 2.7 ± 2.4 Gg·a−1 dFe, 0.3 ± 0.3 Gg·a−1 dCo, 15.0 ± 12.5 Gg·a−1 dNi and 14.2 ± 6.9 Gg·a−1 dCu from the Arctic toward the North Atlantic Ocean. Arctic‐Atlantic exchange of dMn and dZn were more balanced, with a net southbound flux of 2.8 ± 4.7 Gg·a−1 dMn and a net northbound flux of 3.0 ± 7.3 Gg·a−1 dZn. Our results suggest that ongoing changes to shelf inputs and sea ice dynamics in the Arctic, especially in Siberian shelf regions, affect micronutrient availability in FS and the high latitude North Atlantic Ocean.
    Description: Plain Language Summary: Recent studies have proposed that the Arctic Ocean is a source of micronutrients such as dissolved iron (dFe), manganese (dMn), cobalt (dCo), nickel (dNi), copper (dCu) and zinc (dZn) to the North Atlantic Ocean. However, data at the Arctic Ocean gateways including Fram Strait and the Barents Sea Opening have been missing to date and so the extent of Arctic micronutrient transport toward the Atlantic Ocean remains unquantified. Here, we show that Fram Strait is the most important gateway for Arctic‐Atlantic micronutrient exchange which is a result of deep water transport at depths 〉500 m. Combined with a flux estimate for Davis Strait, this study suggests that the Arctic Ocean is a net source of dFe, dNi and dCu, and possibly also dCo, toward the North Atlantic Ocean. Arctic‐Atlantic dMn and dZn exchange seems more balanced. Properties in the East Greenland Current showed substantial similarities to observations in the upstream Central Arctic Ocean, indicating that Fram Strait may export micronutrients from Siberian riverine discharge and shelf sediments 〉3,000 km away. Increasing Arctic river discharge, permafrost thaw and coastal erosion, all consequences of ongoing climate change, may therefore alter future Arctic Ocean micronutrient transport to the North Atlantic Ocean.
    Description: Key Points: Fram Strait is the major gateway for Arctic‐Atlantic exchange of the dissolved micronutrients Fe, Mn, Co, Ni, Cu and Zn. The Arctic is a net source of dissolved Fe, Co, Ni and Cu to the Nordic Seas and toward the North Atlantic; Mn and Zn exchange are balanced. Waters of the Central Arctic Ocean, including the Transpolar Drift, are the main drivers of gross Arctic micronutrient export.
    Description: German Research Foundation
    Description: Netherlands Organization for Scientific Research
    Description: https://doi.pangaea.de/10.1594/PANGAEA.859558
    Description: https://doi.pangaea.de/10.1594/PANGAEA.871030
    Description: https://doi.pangaea.de/10.1594/PANGAEA.868396
    Description: https://doi.pangaea.de/10.1594/PANGAEA.905347
    Description: https://dataportal.nioz.nl/doi/10.25850/nioz/7b.b.jc
    Description: https://doi.pangaea.de/10.1594/PANGAEA.933431
    Description: https://www.bco-dmo.org/dataset/718440
    Description: https://doi.org/10.1594/PANGAEA.936029
    Description: https://doi.org/10.1594/PANGAEA.936027
    Description: https://doi.pangaea.de/10.1594/PANGAEA.927429
    Keywords: ddc:551.9
    Language: English
    Type: doc-type:article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2023-11-17
    Description: Concentrations of the toxic element lead (Pb) are elevated in seawater due to historical emissions. While anthropogenic atmospheric emissions are the dominant source of dissolved Pb (dPb) to the Atlantic Ocean, evidence is emerging of a natural source associated with subglacial discharge into the ocean but this has yet to be constrained around Greenland. Here, we show subglacial discharge from the cavity underneath Nioghalvfjerdsbræ floating ice tongue, is a previously unrecognized source of dPb to the NE Greenland Shelf. Contrasting cavity‐inflowing and cavity‐outflowing waters, we constrain the associated net‐dPb flux as 2.2 ± 1.4 Mg·yr−1, of which ∼90% originates from dissolution of glacial bedrock and cavity sediments. We propose that the retreat of the floating ice tongue, the ongoing retreat of many glaciers on Greenland, associated shifts in sediment dynamics, and enhanced meltwater discharges into shelf waters may result in pronounced changes, possibly increases, in net‐dPb fluxes to coastal waters.
    Description: Plain Language Summary: Lead (Pb) is a toxic element. Hundreds of thousands of tons have historically been emitted into the atmosphere through use of leaded gasoline, ore‐smelting and coal‐combustion which led to large‐scale deposition of Pb into the ocean and onto the Greenland Ice Sheet. Since the phase‐out of leaded gasoline, concentrations of dissolved Pb in the surface ocean have declined, increasing the relative importance of other, natural sources of Pb to the marine environment. In 2016, we conducted a survey near Nioghalvfjerdsbræ, one of Greenland’s largest marine‐terminating glaciers, to investigate if Greenland Ice Sheet discharge is a source of Pb to the Northeast Greenland Shelf. We observed elevated dissolved Pb concentrations at intermediate depths within a ⁓60 km radius downstream of the Nioghalvfjerdsbræ terminus. The Pb enrichment originates from underneath the glacier’s floating ice tongue. Lead sources underneath Nioghalvfjerdsbræ likely include Pb from eroded bedrock and exchange with fjord sediments. Our calculations suggest that Nioghalvfjerdsbræ dissolved Pb discharge is comparable to that from small Arctic rivers. Given the widespread occurance of Pb‐rich minerals across Greenland, observed increases in meltwater discharge and the retreat of marine‐terminating glaciers could increase dPb supply to Greenlandic shelf regions.
    Description: Key Points: Helium and neon show strong evidence for a subglacial source of Pb discharging onto the NE Greenland Shelf. Contrasting inflowing and outflowing waters beneath the floating ice tongue of Nioghalvfjerdsbræ shows a 2‐3‐fold dPb enrichment. The dissolved Pb flux from Nioghalvfjerdsbræ (2.2 ± 1.4 Mg·yr−1) is comparable to small Arctic rivers, with ∼90% of a sedimentary origin.
    Description: Deutsche Forschungsgemeinschaft http://dx.doi.org/10.13039/501100001659
    Description: Bundesministerium für Bildung und Forschung http://dx.doi.org/10.13039/501100002347
    Description: Kuwait Institute for Scientific Research http://dx.doi.org/10.13039/501100005074
    Description: Swiss Polar Foundation
    Description: https://doi.pangaea.de/10.1594/PANGAEA.871028
    Description: https://doi.pangaea.de/10.1594/PANGAEA.871030
    Description: https://doi.pangaea.de/10.1594/PANGAEA.879197
    Description: https://doi.pangaea.de/10.1594/PANGAEA.905347
    Description: https://doi.pangaea.de/10.1594/PANGAEA.933431
    Description: https://doi.pangaea.de/10.1594/PANGAEA.931336
    Description: https://doi.org/10.5194/essd-8-543-2016
    Keywords: ddc:551 ; Greenland ice sheet ; Arctic ; marine‐terminating glacier ; Nioghalvfjerdsbrae ; lead fluxes ; GEOTRACES
    Language: English
    Type: doc-type:article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2024-03-22
    Description: We present high‐resolution profiles of dissolved, labile, and total particulate trace metals (TMs) on the Northeast Greenland shelf from GEOTRACES cruise GN05 in August 2016. Combined with radium isotopes, stable oxygen isotopes, and noble gas measurements, elemental distributions suggest that TM dynamics were mainly regulated by the mixing between North Atlantic‐derived Intermediate Water, enriched in labile particulate TMs (LpTMs), and Arctic surface waters, enriched in Siberian shelf‐derived dissolved TMs (dTMs; Co, Cu, Fe, Mn, and Ni) carried by the Transpolar Drift. These two distinct sources were delineated by salinity‐dependent variations of dTM and LpTM concentrations and the proportion of dTMs relative to the total dissolved and labile particulate ratios. Locally produced meltwater from the Nioghalvfjerdsbræ (79NG) glacier cavity, distinguished from other freshwater sources using helium excess, contributed a large pool of dTMs to the shelf inventory. Localized peaks in labile and total particulate Cd, Co, Fe, Mn, Ni, Cu, Al, V, and Ti in the cavity outflow, however, were not directly contributed by submarine melting. Instead, these particulate TMs were mainly supplied by the re‐suspension of cavity sediment particles. Currently, Arctic Ocean outflows are the most important source of dFe, dCu, and dNi on the shelf, while LpTMs and up to 60% of dMn and dCo are mainly supplied by subglacial discharge from the 79NG cavity. Therefore, changes in the cavity‐overturning dynamics of 79NG induced by glacial retreat, and alterations in the transport of Siberian shelf‐derived materials with the Transport Drift may shift the shelf dTM‐LpTM stoichiometry in the future.
    Description: Plain Language Summary: Trace metals (TMs) including cobalt (Co), iron (Fe), manganese (Mn), copper (Cu), and nickel (Ni) are essential micronutrients for marine productivity. The Northeast Greenland shelf is a climatically sensitive region, influenced by both outflowing Arctic waters and local glacier melting. We lack knowledge on how these Arctic surface waters affect TM dynamics on the Greenland shelf and how climatic shifts may influence TM dynamics. Here, we distinguish local submarine meltwater from Arctic surface waters using distinct tracers; noble gases and radium isotopes. We show that the TM dynamics on the shelf are largely controlled by the intrusion of Arctic surface waters which creates a near‐surface plume of dissolved and labile particulate TMs. Conversely, submarine meltwater creates a subsurface plume enriched in dissolved TMs but depleted in particulate TMs, which is exported from underneath a floating ice tongue. In the future, increasing Arctic river discharge and local glacial melting may both significantly change shelf micronutrient ratios demonstrating downstream impacts of a changing cryosphere on marine biogeochemical cycles.
    Description: Key Points: The overall dissolved and particulate trace metal (TM) dynamics were mainly regulated by the mixing with Arctic surface waters. Resuspension of cavity sediments is a major localized source of labile and total particulate Cd, Co, Fe, Mn, Ni, Cu, Al, V, and Ti. Whilst dissolved and particulate TMs are mostly coupled on the Greenland shelf, cavity outflow decouples both phases.
    Description: Kuwait Institute for Scientific Research
    Description: Deutsche Forschungsgemeinschaft
    Description: https://doi.pangaea.de/10.1594/PANGAEA.871030
    Description: https://doi.pangaea.de/10.1594/PANGAEA.871030
    Description: https://doi.pangaea.de/10.1594/PANGAEA.871028
    Description: https://doi.pangaea.de/10.1594/PANGAEA.905347
    Description: https://doi.pangaea.de/10.1594/PANGAEA.933431
    Description: https://doi.pangaea.de/10.1594/PANGAEA.948466
    Description: https://doi.pangaea.de/10.1594/PANGAEA.936029
    Description: https://doi.pangaea.de/10.1594/PANGAEA.936027
    Description: https://doi.org/10.1594/PANGAEA.931336
    Keywords: ddc:551.9 ; Arctic ; trace metals ; labile particulate ; glacier ; meltwater ; GEOTRACES
    Language: English
    Type: doc-type:article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
    Publication Date: 2023-02-24
    Description: This dataset contains measured labile particulate and total particulate trace element concentrations (Al, Ti, V, P, Fe, Mn, Co, Ni, Cu, and Cd) of water bottle samples collected during GEOTRACES expedition GN05 (PS100) between 21 July and 1 September 2016 on Northeast Greenland Shelf. Samples were collected using the ultra-clean CTD rosette, equipped with 24 × 12 L GoFlo bottles following GEOTRACES sampling protocols (Cutter et al., 2017; https://www.geotraces.org). Particulate TM samples were collected onto pre-acid leached Polyethersulfone (PES) Membrane filters (0.2 µm, Sartorius) with 1.2 - 4.1 L of seawater filtered per sample. Labile particulates were determined after applying a weak acid leach with a mild reducing agent and a short heating step with a total leach time of 2 h. Total particulates were then analyzed following a 15 h reflux digest at 150 °C using a mixture of hydrofluoric acid and nitric acid. The validation of labile and total particulate trace metal analyses was monitored by reference materials BCR-414 and PACS-3. Information on the analytical procedure including reference materials and limits of detection can be found in related published manuscripts. The concentrations reflect the mean and the corresponding uncertainty is calculated as the standard deviation to replicate measurements. Uncertainty is calculated as one standard deviation (1σ, STD) to replicate measurements via ICP-MS. Use of quality flags (QF) according to GEOTRACES policy (https://www.geotraces.org/geotraces-quality-flag-policy/).
    Keywords: Aluminium, particulate; Arctic; ARK-XXX/2, GN05; Bottle number; Cadmium, particulate; Cobalt, particulate; Copper, particulate; CTD/Rosette, ultra clean; CTD-UC; Date/Time of event; DEPTH, water; Event label; Flag; GEOTRACES; Global marine biogeochemical cycles of trace elements and their isotopes; Greenlandic Fjords; Iron, particulate; Labile particulate; LATITUDE; LONGITUDE; Manganese, particulate; Nickel, particulate; North Greenland Sea; particulate; Phosphorus, particulate; Polarstern; PS100; PS100/074-1; PS100/082-1; PS100/090-1; PS100/189-1; PS100/214-1; PS100/241-1; PS100/262-1; PS100/274-2; Standard deviation; Standard deviation, relative; Station label; Titanium, particulate; trace elements; trace metals; Vanadium, particulate
    Type: Dataset
    Format: text/tab-separated-values, 6594 data points
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 5
    Publication Date: 2024-01-20
    Keywords: ARK-XXX/2, GN05; Attenuation, optical beam transmission; AWI_PhyOce; Calculated; Conductivity; CTD, SEA-BIRD SBE 911plus, SN T5101-C3290; CTD/Rosette, ultra clean; CTD-UC; Date/Time of event; Density, sigma-theta (0); DEPTH, water; derived from SBE43 oxygen sensor; Elevation of event; Event label; FRAM; FRontiers in Arctic marine Monitoring; Latitude of event; Longitude of event; North Greenland Sea; Number of observations; Oxygen; Oxygen saturation; Physical Oceanography @ AWI; Polarstern; Pressure, water; PS100; PS100/013-3; PS100/015-1; PS100/021-1; PS100/028-1; PS100/033-1; PS100/037-1; PS100/042-1; PS100/044-1; PS100/050-1; PS100/052-1; PS100/052-5; PS100/053-2; PS100/056-1; PS100/074-1; PS100/082-1; PS100/090-1; PS100/094-1; PS100/101-1; PS100/102-1; PS100/103-2; PS100/135-1; PS100/165-1; PS100/189-1; PS100/202-1; PS100/214-1; PS100/241-1; PS100/262-1; PS100/274-2; PS100/280-1; PS100/288-1; PS100/290-1; Salinity; Temperature, water; Temperature, water, potential; Transmissometer, WET Labs, C-Star
    Type: Dataset
    Format: text/tab-separated-values, 354210 data points
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 6
    Publication Date: 2024-01-16
    Description: This dataset contains measured dissolved trace element concentrations (Fe, Mn, Co, Ni, Cu, Zn, Cd and Pb) of station depth profiles sampled in Fram Strait (North Greenland Sea) during GEOTRACES expedition GN05 (PS100) between 21 July and 1 September 2016. Samples were collected strictly following GEOTRACES guidelines (Cutter et al., 2017; https://www.geotraces.org) and analysed exactly as per Rapp et al., 2017 ( Anal. Chim. Acta; doi:10.1016/j.aca.2017.05.008). Concentrations were intercalibrated with GEOTRACES reference materials SAFe S and GSC (Bruland Research Lab), with exception of dissolved Cd data. Information on the analytical procedure including reference materials and limits of detection can be found in related published manuscripts, the PhD thesis of Stephan Krisch (Christian-Albrechts-Universität zu Kiel) or can be obtained from the authors upon request. Table caption: Measured concentrations of dissolved trace elements in Fram Strait sampled during GEOTRACES expedition GN05 (PS100) between 21 July-1 September 2006. Uncertainty is calculated as one standard deviation (1σ, STD) to replicate measurements via ICP-MS. ND = no data. Use of quality flags (QF) according to GEOTRACES policy (https://www.geotraces.org/geotraces-quality-flag-policy/). Plesae note, dissolved Cd data is not quality controlled. Somes samples were pooled (indicated in column "Bottle") from different bottles at one depth; the concentrations reflects the mean and the corresponding uncertainty is calculated as the standard deviation to replicate measurements. Trace metal concentrations at station 24 may show larger variations between different bottles at one specific depth. Because station 24 is located at Dijmphna Sund entrance sill, we associate these discrepancies to the water column's strong lateral and vertical turbulence (see ucCTD physical oceanography data) (e.g. Mortensen et al. 2011, 2013, Carroll et al. 2017) that goes in hand with localized TM aggregation-dissolution and sediment resuspension processes, thus affecting TM fractionation (e.g. Homoky et al. 2012).
    Keywords: Arctic; ARK-XXX/2, GN05; Bottle number; Cadmium, dissolved; Cadmium, dissolved, standard deviation; calculated, 1 sigma; Cobalt, dissolved; Cobalt, dissolved, standard deviation; Copper, dissolved; Copper, dissolved, standard deviation; Cruise/expedition; CTD/Rosette, ultra clean; CTD-UC; Date/Time of event; DEPTH, water; Elevation of event; Event label; Fram Strait; GEOTRACES; Global marine biogeochemical cycles of trace elements and their isotopes; GN05; Greenland Sea; Inductively coupled plasma - mass spectrometry (ICP-MS); Iron, dissolved; Iron, dissolved, standard deviation; Latitude of event; Lead, dissolved; Lead, standard deviation; Longitude of event; Manganese, dissolved; Manganese, dissolved, standard deviation; micronutrients; Nickel, dissolved; Nickel, dissolved, standard deviation; North Greenland Sea; Polarstern; PS100; PS100/013-1; PS100/015-1; PS100/021-1; PS100/028-1; PS100/033-1; PS100/037-1; PS100/042-1; PS100/044-1; PS100/053-2; PS100/056-1; PS100/074-1; PS100/082-1; PS100/090-1; PS100/094-1; PS100/101-1; PS100/102-1; PS100/103-2; PS100/135-1; PS100/165-1; PS100/189-1; PS100/202-1; PS100/214-1; PS100/241-1; PS100/262-1; PS100/274-2; PS100/280-1; PS100/288-1; Quality flag; Seadatanet flag: Data quality control procedures according to SeaDataNet (2010); Standard deviation, relative; Station label; trace elements; trace metals; Zinc, dissolved; Zinc, dissolved, standard deviation
    Type: Dataset
    Format: text/tab-separated-values, 16511 data points
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 7
    Publication Date: 2024-01-20
    Keywords: ARK-XXX/2, GN05; Attenuation, optical beam transmission; AWI_PhyOce; Bottle number; Calculated; Conductivity; CTD, SEA-BIRD SBE 911plus, SN T5101-C3290; CTD/Rosette, ultra clean; CTD-UC; Date/Time of event; Density, sigma-theta (0); DEPTH, water; derived from SBE43 oxygen sensor; Elevation of event; Event label; FRAM; FRontiers in Arctic marine Monitoring; Latitude of event; Longitude of event; North Greenland Sea; Oxygen; Oxygen saturation; Physical Oceanography @ AWI; Polarstern; Pressure, water; PS100; PS100/013-3; PS100/015-1; PS100/021-1; PS100/028-1; PS100/033-1; PS100/037-1; PS100/042-1; PS100/044-1; PS100/050-1; PS100/052-5; PS100/053-2; PS100/056-1; PS100/074-1; PS100/082-1; PS100/090-1; PS100/094-1; PS100/101-1; PS100/102-1; PS100/103-2; PS100/135-1; PS100/165-1; PS100/189-1; PS100/202-1; PS100/214-1; PS100/241-1; PS100/262-1; PS100/274-2; PS100/280-1; PS100/288-1; Salinity; Temperature, water; Temperature, water, potential; Transmissometer, WET Labs, C-Star
    Type: Dataset
    Format: text/tab-separated-values, 6640 data points
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 8
    Publication Date: 2005-09-01
    Print ISSN: 0043-1354
    Electronic ISSN: 1879-2448
    Topics: Energy, Environment Protection, Nuclear Power Engineering
    Published by Elsevier
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 9
    Publication Date: 2013-05-01
    Print ISSN: 0304-4203
    Electronic ISSN: 1872-7581
    Topics: Geosciences
    Published by Elsevier
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 10
    Publication Date: 2020-08-01
    Print ISSN: 0048-9697
    Electronic ISSN: 1879-1026
    Topics: Energy, Environment Protection, Nuclear Power Engineering
    Published by Elsevier
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...