ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    facet.materialart.
    Unknown
    In:  Geophys. J. Int., Washington D.C., Bundesanstalt für Geowissenschaften und Rohstoffe, vol. 108, no. 4-5, pp. 71-88, pp. L08305
    Publication Date: 1992
    Keywords: Earth model, also for more shallow analyses ! ; CRUST ; Rayleigh waves ; Inversion ; Velocity analysis ; GJI
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    facet.materialart.
    Unknown
    In:  Geophysical Journal International, Washington D.C., Bundesanstalt für Geowissenschaften und Rohstoffe, vol. 100, no. 4-5, pp. 193-202, pp. L08305
    Publication Date: 1990
    Keywords: Data analysis / ~ processing ; Inversion ; Low frequency ... ; Surface waves ; Spain ; Seron ; GJI
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    ISSN: 1420-9136
    Keywords: Key words: Coda waves, coda-Q−1, attenuation, scattering, Venezuela, Caribbean.
    Source: Springer Online Journal Archives 1860-2000
    Topics: Geosciences , Physics
    Notes: Abstract —Northeastern Venezuela has been studied in terms of coda wave attenuation using seismograms from local earthquakes recorded by a temporary short-period seismic network. The studied area has been separated into two subregions in order to investigate lateral variations in the attenuation parameters. Coda-Q −1 (Q c −1) has been obtained using the single-scattering theory. The contribution of the intrinsic absorption (Q i −1) and scattering (Q s −1) to total attenuation (Q t −1) has been estimated by means of a multiple lapse time window method, based on the hypothesis of multiple isotropic scattering with uniform distribution of scatterers. Results show significant spatial variations of attenuation the estimates for intermediate depth events and for shallow events present major differences. This fact may be related to different tectonic characteristics that may be due to the presence of the Lesser Antilles subduction zone, because the intermediate depth seismic zone may be coincident with the southern continuation of the subducting slab under the arc.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
    Electronic Resource
    Electronic Resource
    Oxford, UK : Blackwell Publishing Ltd
    Geophysical journal international 124 (1996), S. 0 
    ISSN: 1365-246X
    Source: Blackwell Publishing Journal Backfiles 1879-2005
    Topics: Geosciences
    Notes: A detailed dispersion analysis of Rayleigh waves propagating across the Iberian Peninsula is carried out. The starting data are high-quality long-period data recorded at the broad-band NARS stations installed in (he Iberian Peninsula during the ILIHA project. We apply methods to obtain a correct selection of data and subsequent two-station surface-wave velocity measurements. A total of 64 teleseismic events recorded by the NARS array and 143 seismic paths have been studied. Several techniques which provide a significant improvement in the signal-to-noise ratio are employed to remove higher-mode interference efficiently and improve the isolation of the fundamental-mode Rayleigh wave from the seismograms. Thereafter, the interstation Rayleigh wave phase and group velocities are determined. We perform simultaneous inversion of phase-and group-velocity dispersion data by means of the stochastic inverse operator, and lest the reliability of the results by computing resolving kernels and also by forward modelling. A regionalization procedure based on the Backus-Gilbert approach for linear inversion of traveltime data is applied.Both the inversion results and the contoured shear-wave velocity panoramas display the main features of the deep structure of Iberia. We find a subcrustal low-velocity channel which extends over practically the whole peninsular area and spans a depth interval of approximately 40–50 km; it exhibits velocities of between 4.30 and 4.50 km s-1. At depths of 66–81 km, we find the highest velocities in the lithosphere, which reach values of 4.85 km s-1 in many cases. The low-velocity channel of the asthenosphere spans a large depth interval of approximately 80-180 km; it shows the lowest velocity values computed by us. We find velocities decreasing with depth, which are of the order of 4.25–4.36 km s-1 for the first 40 km and of the order of 4.00–4.25 km s-1 for the rest. The upper mantle under the asthenosphere exhibits high velocities, which range between 4.62 and 4.82 km s-1 in most cases.The shear-wave velocity structure of the Iberian subcrustal lithosphere and asthenosphere is mapped at 11 depth intervals from 24 to 201 km. At the top of the mantle, relatively low velocities span the Ebro Valley and also the southern third of the peninsula. Low velocities appear in the south-southwest quadrant, and high velocities occur over the Hercynian basement. At greater lithospheric depths, very low velocities extending over the whole peninsula suggest a low-velocity channel of non-uniform lateral structure, where a reduced zone to the west of the Iberian plateau shows relatively high velocities. At the greatest lithospheric depths, the whole Iberian block is fairly homogeneous laterally. The asthenosphere shows a notable lateral heterogeneity as well. We distinguish two parts: the upper asthenosphere, a 40 km thick layer with predominant velocity values of 4.25 km s or more; and the lower asthenosphere, a 60 km thick layer with velocity values generally below 4.25 km s-1. The upper asthenosphere seems to be less laterally heterogeneous than the lower asthenosphere. The lower asthenosphere exhibits a more pronounced negative velocity gradient than the upper asthenosphere.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 5
    Electronic Resource
    Electronic Resource
    Oxford, UK : Blackwell Publishing Ltd
    Geophysical journal international 108 (1992), S. 0 
    ISSN: 1365-246X
    Source: Blackwell Publishing Journal Backfiles 1879-2005
    Topics: Geosciences
    Notes: A rigorous study of velocity dispersion of surface waves generated by teleseismic events propagating across the Iberian Peninsula and traversing main geological units, has been carried out from a set of selected analogue data, as digital records have only become available recently. Dispersed seismic signals have been obtained over a period of 16 years, between 1967 and 1982, at the five Iberian stations having long-period instruments. In our study, we have considered many earthquakes thus obtaining a fairly good path coverage of most of the peninsula for two-station Rayleigh wave velocity measurements. In all cases, the approach azimuths of the wavefronts were carefully checked. Several digital filtering techniques have been employed to remove the effects of multipathing and modal contamination, and to isolate the fundamental mode from Rayleigh wavetrains. Thus, we have obtained good estimates for both phase and group velocities. A time-variable filter has reduced the influence of noise and removed higher mode interference. Multiple filtering is then used to compute group velocity. Frequency-domain Wiener deconvolution is used to compute the interstation phase velocity. The determined average Rayleigh wave velocities reveal differences in the propagation conditions of the seismic energy across the peninsula. A mapping of velocities for various periods of reference, together with a mapping of errors in velocity, are the basis for obtaining the Rayleigh wave velocity distribution in the peninsula. Theoretical 2-D layered earth models are obtained by joint inversion of phase and group velocity dispersion curves using the stochastic inverse operator. In our inversion scheme, we use velocities corrected for anelastic effects. Finally, a 3-D mapping of S velocity is performed. This study shows important regional features of the deep structure of Iberia; we see small lateral inhomogeneities and also two low-velocity layers: one with shear velocities usually ranging from 4.23 to 4.31 km s-1 directly under the Moho, and another, the asthenosphere, with a negative velocity gradient for depths between 81 and 181 km, terminated at the bottom by a sharp discontinuity.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 6
    Electronic Resource
    Electronic Resource
    Oxford, UK : Blackwell Publishing Ltd
    Geophysical journal international 103 (1990), S. 0 
    ISSN: 1365-246X
    Source: Blackwell Publishing Journal Backfiles 1879-2005
    Topics: Geosciences
    Notes: Coda wave analysis is used to obtain frequency-dependent coda-Q values for different seismic zones of the Iberian area. Seventeen source regions around the Geophysical Observatory of Toledo and some four seismic events per region have been considered in this study. We have used an iterative Fourier analysis technique to see the variation of the frequency along the coda, also taking into account the instrument response. We have applied a suitable criterion to select the predominant frequency every 5 s along the coda. The variation of the frequency with time for each region is averaged with a second-degree polynomial, which is compared to master curves obtained directly from the response of the seismograph system, in order to determine the elastic quality factor Q. It has been observed that the frequency-time curves thus obtained are better explained if Q is considered as an exponential function of the peak frequency. The main result of this work is a set of 1 Hz Q values with a clear indication that frequency dependence of Q exists, although the bandwidth from which our conclusions are reached is only 0.5–1 Hz. The coda-Q values obtained for the tectonically most stable areas (north Spain) appear somewhat higher, Q 〉 300, than those corresponding to the seismic active zones (south Spain), Q 〈 250. Thus, a clear relationship is established between Q values and the two major tectonic provinces in Iberia. These results may be helpful for seismic risk and earthquake engineering purposes.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 7
    Electronic Resource
    Electronic Resource
    Oxford, UK : Blackwell Publishing Ltd
    Geophysical journal international 100 (1990), S. 0 
    ISSN: 1365-246X
    Source: Blackwell Publishing Journal Backfiles 1879-2005
    Topics: Geosciences
    Notes: Several attenuation studies have established a frequency dependence law of the anelastic attenuation factor Q in the form Q=Qo(f/fo)v for the approximate 1–10 Hz frequency range. We propose a method that leads to the determination of Qo, which is a function of the reference frequency fo, and the real exponent v with a single station. to carry out the problem we determine a set of master curves as a function of v. We discuss the method, and the different features of the master curves, when it is applied to the complicated regions of the Iberian Peninsula and to several instruments with different responses. Using this new method and the seismographic stations available in the Iberian Peninsula we have mapped iso-Q0 lines, at a reference frequency of 1 Hz, applying inversion methods. the Q0 values determined for Iberia vary between about 100 and about 600. Values close to 100 correspond to the southern part of Iberia. In general, Qo values increase from south to north with values about 600 near the NW part of Iberia. the Pyrenees Mountains and adjacent areas present Q0 values between about 200 and about 350. These results suggest a strong Q0 lateral variation in Iberia. A considerable frequency dependence of coda-Q has also been determined. the v values vary between 0.3 and 0.8. the Q0 values obtained in the Iberian Peninsula show very good agreement with several Q0 values obtained in other regions of the world. Comparison between the iso-Q0 lines and other geophysical parameters, like regional variations of Pn velocities, heat flow, isoseimal intensity distribution and crustal thickness, indicates that lower Q0 values are associated with higher isoseismal intensity attenuation, higher heat flow, lower Pn velocities and thinner crust.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 8
    Electronic Resource
    Electronic Resource
    Oxford, UK : Blackwell Publishing Ltd
    Geophysical journal international 100 (1990), S. 0 
    ISSN: 1365-246X
    Source: Blackwell Publishing Journal Backfiles 1879-2005
    Topics: Geosciences
    Notes: Several filtering techniques have been used to remove the effects of multipathing and modal contamination, and to isolate the fundamental mode from Rayleigh wavetrains. Group velocity data are obtained by means of the multiple-filter technique. A time-variable filter has allowed the influence of noise as well as the interference produced by higher modes to be removed. Multiple filtering is then used again to compute group velocities at each station. the interstation group velocity for the fundamental mode Rayleigh wave is estimated according to the velocities at two stations. Frequency-domain Wiener deconvolution is used to compute the phase velocity between two stations. the well-known three-station method is applied to correct the distances travelled by the waves across the array and therefore to determine interstation phase and group velocities in a more accurate manner. On the other hand, lateral refraction at the Atlantic continental edge of the Peninsula is also studied. Phase velocities are corrected for the anelastic effect. Inversion of the interstation Rayleigh wave phase velocities is then made in accordance with generalized inversion theory to obtain theoretical 2-D layered earth models. In this paper, these methods are applied to Rayleigh waves generated by teleseismic events propagating across the Iberian Peninsula and recorded at WWSSN stations. As a consequence, new and principal features for the Iberian lithosphere-asthenosphere system are obtained. A very interesting feature of the the Iberian lithosphere was found-a low-velocity layer directly under the Moho, between 39 and 64 km depth, with shear velocities ranging from 4.12 to 4.37 km s-1. the Iberian asthenosphere, which lies between 100 and 180km depth, is not an homogeneous layer and shows a negative velocity gradient from top to bottom together with a sudden increase in shear velocity beneath the low-velocity zone.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 9
    Electronic Resource
    Electronic Resource
    Amsterdam : Elsevier
    Physics of the Earth and Planetary Interiors 79 (1993), S. 349-365 
    ISSN: 0031-9201
    Source: Elsevier Journal Backfiles on ScienceDirect 1907 - 2002
    Topics: Geosciences , Physics
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 10
    Publication Date: 1990-10-01
    Print ISSN: 0956-540X
    Electronic ISSN: 1365-246X
    Topics: Geosciences
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...