ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
Collection
Language
Years
  • 1
    Monograph available for loan
    Monograph available for loan
    New York : Macmillan Learning
    Call number: AWI G1-21-94626
    Type of Medium: Monograph available for loan
    Pages: Getrennte Zählungen , Illustrationen, Karten
    Edition: Eighth edition
    ISBN: 9781319055325 , 9781319325398 , 1319325394
    Former Title: Understanding earth [5th edition]
    Language: English
    Note: Contents About the Authors Preface Chapter 1 The Earth System The Scientific Method Hypothesis and Theory Scientific Models Importance of Scientific Collaboration Geology as a Science Earth's Shape and Surface Peeling the Onion: Discovery of a Layered Earth Earth's Density The Mantle and Core The Crust The Inner Core Chemical Composition of Earth's Major Layers Earth as a System of Interacting Components The Climate System The Plate Tectonic System The Geodynamo Interactions Among Geosystems Support Life An Overview of Geologic Time The Origin of Earth and Its Global Geosystems The Evolution of Life Chapter 2 Plate Tectonics: The Unifying Theory The Discovery of Plate Tectonics Continental Drift Seafloor Spreading The Great Synthesis: 1963-1968 The Plates and Their Boundaries Divergent Boundaries Convergent Boundaries Transform Faults Combinations of Plate Boundaries Rates and History of Plate Movements The Seafloor as a Magnetic Tape Recorder Deep-Sea Drilling Measurements of Plate Movements by Geodesy The Grand Reconstruction Seafloor isochrons Reconstructing the History of Plate Movements The Breakup of Pangaea The Assembly of Pangaea by Continental Drift Implications of the Grand Reconstruction Mantle Convection:The Engine of Plate Tectonics Where Do the Plate-Driving Forces Originate? How Deep Does Plate Recycling Occur? What Is the Nature of Rising Convection Currents? Chapter 3 Earth Materials: Minerals and Rocks What Are Minerals? The Structure of Matter The Structure of Atoms Atomic Number and Atomic Mass Chemical Reactions Chemical Bonds The Formation of Minerals The Atomic Structure of Minerals The Crystallization of Minerals How Do Minerals Form? Classes of Rock-Forming Minerals Silicates Carbonates Oxides Sulfides Sulfates Physical Properties of Minerals Hardness Cleavage Fracture Luster Color Density Crystal Habit What Are Rocks? Properties of Rocks Igneous Rocks Sedimentary Rocks Metamorphic Rocks The Rock Cycle: Interactions Between the Plate Tectonic and Climate Systems Concentrations of Valuable Mineral Resources Hydrothermal Deposits Igneous Deposits Sedimentary Deposits Mineral Evolution Chapter 4 Igneous Rocks: Solids from Melts How Do Igneous Rocks Differ from One Another? Texture Chemical and Mineral Composition How Do Magmas Form? How Do Rocks Melt? The Formation of Magma Chambers Where Do Magmas Form? Magmatic Differentiation Fractional Crystallization: Laboratory and Field Observations Granite from Basalt: Complexities of Magmatic Differentiation Forms of Igneous Intrusions Plutons Sills and Dikes Veins Igneous Processes and Plate Tectonics Spreading Centers as Magma Factories Subduction Zones as Magma Factories Mantle Plumes as Magma Factories Chapter 5 Volcanoes Volcanoes as Geosystems Lavas and Other Volcanic Deposits Types of Lava Textures of Volcanic Rocks Pyroclastic Deposits Eruptive Styles and Landforms Central Eruptions Fissure Eruptions Interactions of Volcanoes with Other Geosystems Volcanism and the Hydrosphere Volcanism and the Atmosphere The Global Pattern of Volcanism Volcanism at Spreading Centers Volcanism in Subduction Zones Intraplate Volcanism: The Mantle Plume Hypothesis 2018 Eruption of Kilauea Volcano, Hawaii Volcanism and Human Affairs Volcanic Hazards Reducing the Risks of Volcanic Hazards Natural Resources from Volcanoes Chapter 6 Sedimentation: Rocks Formed by Surface Processes Surface Processes of the Rock Cycle Weathering and Erosion: The Source of Sediments Transportation and Deposition: The Downhill Journey to Sedimentary Basins Oceans as Chemical Mixing Vats Sedimentary Basins:The Sinks for Sediments Rift Basins and Thermal Subsidence Basins Flexural Basins Sedimentary Environments Continental Sedimentary Environments Shoreline Sedimentary Environments Marine Sedimentary Environments Siliciclastic versus Chemical and Biological Sedimentary Environments Sedimentary Structures Cross-Bedding Graded Bedding Ripples Bioturbation Structures Bedding Sequences Burial and Diagenesis: From Sediment to Rock Burial Diagenesis Classification of SiliciclasticSediments and Sedimentary Rocks Coarse-Grained Siliciclastics: Gravel and Conglomerate Medium-Grained Siliciclastics: Sand and Sandstone Fine-Grained Siliciclastics Classification of Chemical and Biological Sediments and Sedimentary Rocks Carbonate Sediments and Rocks Evaporite Sediments and Rocks: Products of Evaporation Other Biological and Chemical Sediments Chapter 7 Metamorphism: Alteration of Rocks by Temperature and Pressure Causes of Metamorphism The Role of Temperature The Role of Pressure The Role of Fluids Types of Metamorphism Regional Metamorphism Contact Metamorphism Seafloor Metamorphism Other Types of Metamorphism MetamorphicTextures Foliation and Cleavage Foliated Rocks Granoblastic Rocks Porphyroblasts Regional Metamorphism and Metamorphic Grade Mineral Isograds: Mapping Zones of Change Metamorphic Grade and Parent Rock Composition Metamorphic Fades PlateTectonics and Metamorphism Metamorphic Pressure-Temperature Paths Ocean-Continent Convergence Continent-Continent Collision Exhumation: A Link Between the Plate Tectonic and Climate Systems Chapter 8 Deformation: Modification of Rocks by Folding and Fracturing PlateTectonic Forces Mapping Geologic Structure Measuring Strike and Dip Geologic Maps Geologic Cross Sections How Rocks Deform Brittle and Ductile Behavior of Rocks in the Laboratory Brittle and Ductile Behavior of Rocks in Earth's Crust Basic Deformation Structures Faults Folds Circular Structures Joints Deformation Textures Styles of Continental Deformation Tensional Tectonics Compressive Tectonics Shearing Tectonics Unraveling Geologic History Chapter 9 Clocks in Rocks: liming the Geologic Record Reconstructing Geologic History From the Stratigraphic Record Principles of Stratigraphy Fossils as Recorders of Geologic Time Unconformities: Gaps in the Geologic Record Cross-Cutting Relationships The Geologic Time Scale: Relative Ages Intervals of Geologic Time Interval Boundaries Mark Mass Extinctions Ages of Petroleum Source Rocks Measuring Absolute Time with Isotopic Clocks Discovery of Radioactivity Radioactive Isotopes: The Clocks in Rocks Isotopic Dating Methods The Geologic Time Scale: Absolute Ages Eons: The Longest Intervals of Geologic Time Perspectives on Geologic Time Recent Advances in Timing the Earth System Sequence Stratigraphy ,Chemical Stratigraphy Paleomagnetic Stratigraphy Clocking the Climate System Chapter 10 Earthquakes What Is an Earthquake? The Elastic Rebound Theory Fault Rupture During Earthquakes Foreshocks and Aftershocks How Do We Study Earthquakes? Seismographs Seismic Waves Locating the Focus Measuring the Size of an Earthquake Determining Fault Mechanisms GPS Measurements and "Silent" Earthquakes Earthquakes and Patterns of Faulting The Big Picture: Earthquakes and Plate Tectonics Regional Fault Systems Earthquake Hazards and Risks How Earthquakes Cause Damage Reducing Earthquake Risk Can Earthquakes Be Predicted? Long-Term Forecasting Short-Term Prediction Medium-Term Forecasting Chapter 11 Exploring Earth's Interior Exploring Earth's Interior with Seismic Waves Basic Types of Waves Paths of Seismic Waves Through Earth Seismic Exploration of Near-Surface Layering Layering and Composition of Earth's Interior The Crust The Mantle The Core-Mantle Boundary The Core Earth's Internal Temperature Heat Flow Through Earth's Interior Temperatures Inside Earth Visualizing Earth'sThree-Dimensional Structure Seismic Tomography Earth's Gravitational Field Earth's Magnetic Field and the Geodynamo The Dipole Field Complexity of the Magnetic Field Paleomagnetism The Magnetic Field and the Biosphere Chapter 12 The Climate System What Is Climate? Components of the Climate
    Location: AWI Reading room
    Branch Library: AWI Library
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...