ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
Collection
Keywords
  • 1
    Publication Date: 2023-01-30
    Keywords: Ammonia; black carbon; Black carbon, dissolved; Cadmium; Carbon, organic, dissolved; Chlorophyll a; Cobalt; Copper; Date/Time of event; DEPTH, water; Event label; Iron; Latitude of event; Lead; Longitude of event; Manganese; Nickel; Nitrate and Nitrite; Phosphate; Replicates; Salinity; Santa Barbara Basin; Santa Barbara Basin, California, United States of America; SBB_SW-1; SBB_SW-2; SBB_SW-3; SBB_SW-4; SBB_SW-5; SBB_SW-6; SBB_SW-7; SBB_SW-8; Silicate; SW-1; SW-2; SW-3; SW-4; SW-5; SW-6; SW-7; SW-8; Temperature, water; Thomas Fire; trace metals; Ventura River; wildfire; Zinc; δ13C, chlorophyll a; δ13C, chlorophyll a, standard deviation
    Type: Dataset
    Format: text/tab-separated-values, 164 data points
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2023-01-30
    Keywords: black carbon; Black carbon, dissolved; Cadmium; Calculated; Carbon, organic, dissolved; Cobalt; Comment; Copper; Date/Time of event; Discharge; Event label; Height; Iron; Latitude of event; Lead; Longitude of event; Manganese; Nickel; Santa Barbara Basin; Thomas Fire; Time in hours; trace metals; Ventura River; Ventura River, California, United States of America; VR-1; VR-10; VR-11; VR-12; VR-13; VR-2; VR-3; VR-4; VR-5; VR-6; VR-7; VR-8; VR-9; wildfire; Zinc
    Type: Dataset
    Format: text/tab-separated-values, 287 data points
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2023-07-11
    Description: Aerosol, seawater, and floodwater samples were taken during the 2017 California Thomas Fire and subsequent flash flood event. These samples were used to examine how fire-flood sequences affect metal and black carbon delivery to coastal waters, such as the Santa Barbara Basin (SBB). On day 11 of the Thomas Fire, aerosols sampled at sea level under a smoke plume over the SBB found high levels of PM2.5, levoglucosan, and black carbon (average: 49 μg/m^3, 1.05 μg/m^3, 14.93 μg/m^3, respectively) and both soluble and total aerosol metal concentrations were consistent with a forest fire signature. Metal, nutrient, and chlorophyll a concentrations in surface seawater (average: 2.42 nM Fe, 0.14 µM phosphate, and 0.44 µgChla/L) were similar to concentrations during non-fire conditions, thus we could not establish fire-related increases in the SBB surface waters. On days 37 to 40 of the fire, before, during, and after a flash flood in the Ventura River, dissolved organic carbon, dissolved black carbon, and dissolved metal concentrations were positively correlated with discharge. Our findings confirm that black carbon and metals were released by the Thomas Fire and transported by both atmospheric and fluvial pathways.
    Keywords: black carbon; Santa Barbara Basin; Thomas Fire; trace metals; Ventura River; wildfire
    Type: Dataset
    Format: application/zip, 3 datasets
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
    Publication Date: 2023-07-11
    Keywords: black carbon; Black carbon, aerosol; Cadmium; Cadmium, soluble; Cobalt; Cobalt, soluble; Copper; Copper, soluble; Date/time end; Date/time start; Iron; Iron, soluble; Lead; Lead, soluble; Levoglucosan; Manganese; Manganese, soluble; Manganese, total; Nickel; Nickel, soluble; Particulate matter, 〈 2.5 µm; Sample ID; Sample volume; Santa_Barbara_Basin_Aerosols; Santa Barbara Basin; Size fraction; Thomas Fire; trace metals; Ventura River; wildfire; Zinc; Zinc, soluble
    Type: Dataset
    Format: text/tab-separated-values, 383 data points
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 5
    Publication Date: 2024-01-06
    Description: The Tara Pacific expedition (2016-2018) sampled coral ecosystems around 32 islands in the Pacific Ocean, and sampled the surface of oceanic waters at 249 locations, resulting in the collection of nearly 58,000 samples. The expedition was designed to systematically study corals, fish, plankton, and seawater, and included the collection of samples for advanced biogeochemical, molecular, and imaging analysis. Here we provide the total dissolvable (i.e. acidified unfiltered whole seawater) Fe, Zn, Mn, Ni, Cd, Co, Cu, and Pb concentrations for 242 surface seawater samples. Trace metal analyses were performed with the goals of characterizing the surface seawater trace metal distribution across the open ocean and coastal regions in both the Atlantic and Pacific, and exploring metal-dependent ecosystem structure and metabolism. Some of the findings include high concentrations of iron (Fe) and manganese (Mn) in several regions, such as the North Atlantic Ocean and near the South Pacific islands, possibly due to Saharan dust and hydrothermal vent input, respectively. Elevated lead (Pb) was found in the North Pacific near southeast Asia, where anthropogenic sources may contribute. We also observe interbasin differences in concentrations for most of the metals, such as cobalt (Co), which is relatively high in the North Atlantic in comparison to the Pacific, perhaps due to dust deposition or continental weathering. There are also intrabasin differences in metal concentrations between oligotrophic and upwelling regions, exemplified by the higher cadmium (Cd) concentrations near the Peruvian coast, likely due to upwelling. Overall we captured high-resolution trace metal data that depicts the nuances in the metal distribution of the global ocean.
    Keywords: Bottle, multi level trace metal; Cadmium, dissolved; Cobalt, dissolved; Comment; Copper, dissolved; Depth, bottom/max; Depth, top/min; DEPTH, water; Environmental feature; Event label; Fondation Tara Expeditions; FondTara; HANDHELD-BOW-POLE; INLINE-PUMP; Iron, dissolved; Lead, dissolved; Manganese, dissolved; MLTM; Nickel, dissolved; OA000-I00-S00; OA000-I10-S01; OA000-I10-S02; OA000-I14-S00; OA000-I18-S03; OA000-I21-S01; OA000-I21-S02; OA000-I31-S00; OA001-I00-S00; OA002-I00-S00; OA003-I00-S00; OA004-I00-S00; OA005-I00-S00; OA006-I00-S00; OA009-I00-S00; OA010-I00-S00; OA011-I00-S00; OA012-I00-S00; OA013-I00-S00; OA014-I00-S00; OA015-I00-S00; OA016-I00-S00; OA017-I00-S00; OA018-I00-S00; OA019-I00-S00; OA020-I00-S00; OA021-I00-S00; OA022-I00-S00; OA023-I00-S00; OA024-I00-S00; OA025-I00-S00; OA026-I00-S00; OA027-I00-S00; OA028-I00-S00; OA029-I03-S00; OA030-I03-S00; OA031-I00-S00; OA032-I00-S00; OA033-I00-S00; OA039-I00-S00; OA040-I00-S00; OA041-I04-S00; OA042-I04-S00; OA043-I04-S00; OA044-I04-S00; OA045-I00-S00; OA046-I00-S00; OA047-I00-S00; OA048-I05-S00; OA049-I05-S00; OA050-I05-S00; OA051-I00-S00; OA052-I00-S00; OA053-I06-S00; OA054-I06-S00; OA055-I06-S00; OA056-I00-S00; OA057-I00-S00; OA058-I00-S00; OA061-I07-S00; OA062-I00-S00; OA063-I08-S00; OA064-I08-S00; OA065-I00-S00; OA066-I09-S00; OA067-I09-S00; OA068-I10-S00; OA069-I10-S00; OA070-I10-S00; OA071-I10-S00; OA072-I11-S00; OA073-I11-S00; OA074-I11-S00; OA075-I12-S00; OA076-I12-S00; OA077-I12-S00; OA078-I00-S00; OA079-I00-S00; OA080-I13-S00; OA081-I13-S00; OA082-I13-S00; OA083-I13-S00; OA084-I00-S00; OA085-I00-S00; OA086-I00-S00; OA087-I00-S00; OA088-I00-S00; OA089-I14-S00; OA090-I14-S00; OA091-I14-S00; OA092-I15-S00; OA093-I15-S00; OA094-I00-S00; OA095-I16-S00; OA096-I00-S00; OA097-I00-S00; OA098-I00-S00; OA099-I00-S00; OA100-I00-S00; OA101-I00-S00; OA102-I00-S00; OA103-I00-S00; OA104-I00-S00; OA105-I00-S00; OA106-I00-S00; OA107-I00-S00; OA108-I00-S00; OA109-I00-S00; OA110-I00-S00; OA111-I00-S00; OA112-I00-S00; OA113-I00-S00; OA114-I00-S00; OA115-I00-S00; OA116-I00-S00; OA117-I00-S00; OA118-I00-S00; OA119-I00-S00; OA120-I00-S00; OA121-I00-S00; OA122-I00-S00; OA123-I00-S00; OA124-I00-S00; OA125-I00-S00; OA126-I00-S00; OA127-I18-S00; OA128-I18-S00; OA129-I18-S00; OA130-I18-S00; OA131-I00-S00; OA132-I00-S00; OA133-I00-S00; OA134-I00-S00; OA135-I00-S00; OA136-I00-S00; OA137-I00-S00; OA139-I00-S00; OA140-I19-S00; OA141-I19-S00; OA142-I19-S00; OA143-I19-S00; OA144-I00-S00; OA145-I20-S00; OA146-I20-S00; OA147-I00-S00; OA148-I21-S00; OA149-I21-S00; OA150-I00-S00; OA151-I00-S00; OA152-I00-S00; OA153-I00-S00; OA154-I00-S00; OA155-I22-S00; OA156-I23-S00; OA157-I23-S00; OA158-I23-S00; OA159-I23-S00; OA160-I24-S00; OA161-I24-S00; OA162-I24-S00; OA163-I00-S00; OA164-I00-S00; OA165-I00-S00; OA166-I25-S00; OA167-I26-S00; OA168-I26-S00; OA169-I00-S00; OA170-I27-S00; OA171-I27-S00; OA172-I28-S00; OA173-I00-S00; OA174-I00-S00; OA175-I00-S00; OA176-I00-S00; OA177-I00-S00; OA178-I00-S00; OA179-I00-S00; OA180-I00-S00; OA181-I00-S00; OA182-I00-S00; OA184-I00-S00; OA185-I00-S00; OA186-I00-S00; OA187-I00-S00; OA188-I00-S00; OA189-I00-S00; OA190-I29-S00; OA191-I29-S00; OA192-I00-S00; OA193-I00-S00; OA194-I00-S00; OA195-I00-S00; OA196-I00-S00; OA197-I00-S00; OA198-I00-S00; OA199-I00-S00; OA200-I00-S00; OA201-I00-S00; OA202-I00-S00; OA203-I00-S00; OA204-I00-S00; OA205-I00-S00; OA206-I00-S00; OA207-I00-S00; OA208-I00-S00; OA209-I00-S00; OA210-I00-S00; OA211-I00-S00; OA212-I00-S00; OA213-I00-S00; OA214-I00-S00; OA216-I30-S00; OA217-I00-S00; OA218-I00-S00; OA221-I31-S00; OA223-I00-S00; OA224-I00-S00; OA225-I00-S00; OA226-I00-S00; OA227-I00-S00; OA228-I00-S00; OA229-I00-S00; OA230-I32-S00; OA232-I32-S00; OA233-I00-S00; OA234-I00-S00; OA235-I00-S00; OA236-I00-S00; OA237-I00-S00; OA238-I00-S00; OA240-I00-S00; OA241-I00-S00; OA242-I00-S00; OA243-I00-S00; OA244-I00-S00; OA245-I00-S00; OA246-I00-S00; OA247-I00-S00; OA249-I00-S00; Pacific; Quality control; Sample code/label; Sample comment; Sample ID; surface seawater; SV Tara; TARA_20160529T1635Z_D_O-SRF_HANDHELD-BOW-POLE; TARA_20160530T1630Z_D_O-SRF_HANDHELD-BOW-POLE; TARA_20160531T1345Z_D_O-SRF_HANDHELD-BOW-POLE; TARA_20160601T1629Z_D_O-SRF_HANDHELD-BOW-POLE; TARA_20160602T1436Z_D_O-SRF_HANDHELD-BOW-POLE; TARA_20160604T1445Z_D_O-SRF_HANDHELD-BOW-POLE; TARA_20160605T1850Z_D_O-SRF_HANDHELD-BOW-POLE; TARA_20160608T1605Z_D_O-SRF_HANDHELD-BOW-POLE; TARA_20160609T1734Z_D_O-SRF_HANDHELD-BOW-POLE; TARA_20160610T1502Z_D_O-SRF_HANDHELD-BOW-POLE; TARA_20160611T1513Z_D_O-SRF_HANDHELD-BOW-POLE; TARA_20160613T1430Z_D_O-SRF_HANDHELD-BOW-POLE; TARA_20160614T1325Z_D_O-SRF_HANDHELD-BOW-POLE; TARA_20160615T1643Z_D_O-SRF_HANDHELD-BOW-POLE; TARA_20160616T1906Z_D_O-SRF_HANDHELD-BOW-POLE; TARA_20160617T1920Z_D_O-SRF_HANDHELD-BOW-POLE; TARA_20160618T1702Z_D_O-SRF_HANDHELD-BOW-POLE; TARA_20160619T1928Z_D_O-SRF_HANDHELD-BOW-POLE; TARA_20160620T2234Z_D_O-SRF_HANDHELD-BOW-POLE; TARA_20160621T1710Z_D_O-SRF_HANDHELD-BOW-POLE; TARA_20160622T1700Z_D_O-SRF_HANDHELD-BOW-POLE; TARA_20160623T1715Z_D_O-SRF_HANDHELD-BOW-POLE; TARA_20160624T2100Z_D_O-SRF_HANDHELD-BOW-POLE; TARA_20160625T1800Z_D_O-SRF_HANDHELD-BOW-POLE; TARA_20160626T1800Z_D_O-SRF_HANDHELD-BOW-POLE; TARA_20160627T1350Z_D_O-SRF_HANDHELD-BOW-POLE; TARA_20160706T2202Z_D_O-SRF_HANDHELD-BOW-POLE; TARA_20160712T1649Z_D_O-SRF_HANDHELD-BOW-POLE; TARA_20160816T2000Z_D_I-SRF_HANDHELD-BOW-POLE; TARA_20160817T2124Z_D_I-SRF_HANDHELD-BOW-POLE; TARA_20160818T2253Z_D_O-SRF_HANDHELD-BOW-POLE; TARA_20160819T2150Z_D_O-SRF_HANDHELD-BOW-POLE; TARA_20160819T2355Z_D_O-SRF_INLINE-PUMP; TARA_20160820T2229Z_D_O-SRF_HANDHELD-BOW-POLE; TARA_20160822T2300Z_D_O-SRF_HANDHELD-BOW-POLE; TARA_20160823T2325Z_D_O-SRF_HANDHELD-BOW-POLE; TARA_20160824T2325Z_D_O-SRF_HANDHELD-BOW-POLE; TARA_20160825T2355Z_D_O-SRF_HANDHELD-BOW-POLE; TARA_20160828T0013Z_D_O-SRF_HANDHELD-BOW-POLE; TARA_20160828T1845Z_D_O-SRF_HANDHELD-BOW-POLE; TARA_20160829T1944Z_D_O-SRF_HANDHELD-BOW-POLE; TARA_20160830T1644Z_D_I-SRF_HANDHELD-BOW-POLE; TARA_20160831T0515Z_N_I-SRF_HANDHELD-BOW-POLE; TARA_20160831T1723Z_D_I-SRF_HANDHELD-BOW-POLE; TARA_20160908T0615Z_N_I-SRF_HANDHELD-BOW-POLE; TARA_20160909T2325Z_D_O-SRF_HANDHELD-BOW-POLE; TARA_20160910T1615Z_D_O-SRF_HANDHELD-BOW-POLE; TARA_20160911T1802Z_D_O-SRF_HANDHELD-BOW-POLE; TARA_20160912T1712Z_D_I-SRF_HANDHELD-BOW-POLE; TARA_20160917T1520Z_D_I-SRF_HANDHELD-BOW-POLE; TARA_20160917T2237Z_D_I-SRF_HANDHELD-BOW-POLE; TARA_20160919T0110Z_D_I-SRF_HANDHELD-BOW-POLE; TARA_20160919T1708Z_D_O-SRF_HANDHELD-BOW-POLE; TARA_20160920T2340Z_D_I-SRF_HANDHELD-BOW-POLE; TARA_20160921T0603Z_N_I-SRF_HANDHELD-BOW-POLE; TARA_20160928T0751Z_N_I-SRF_HANDHELD-BOW-POLE; TARA_20160929T0110Z_D_O-SRF_HANDHELD-BOW-POLE; TARA_20160929T1905Z_D_O-SRF_HANDHELD-BOW-POLE; TARA_20161001T1721Z_D_O-SRF_HANDHELD-BOW-POLE; TARA_20161111T0102Z_D_I-SRF_HANDHELD-BOW-POLE; TARA_20161111T1810Z_D_O-SRF_HANDHELD-BOW-POLE; TARA_20161112T1810Z_D_I-SRF_HANDHELD-BOW-POLE; TARA_20161118T0317Z_D_I-SRF_HANDHELD-BOW-POLE; TARA_20161119T1921Z_D_O-SRF_HANDHELD-BOW-POLE; TARA_20161120T1915Z_D_I-SRF_HANDHELD-BOW-POLE; TARA_20161120T2155Z_D_I-SRF_HANDHELD-BOW-POLE; TARA_20161127T0232Z_D_I-SRF_HANDHELD-BOW-POLE; TARA_20161127T2023Z_D_I-SRF_HANDHELD-BOW-POLE; TARA_20161128T0826Z_N_I-SRF_HANDHELD-BOW-POLE; TARA_20161130T0206Z_D_S-SRF_HANDHELD-BOW-POLE; TARA_20161201T0215Z_D_S-SRF_HANDHELD-BOW-POLE; TARA_20161203T1902Z_D_I-SRF_HANDHELD-BOW-POLE; TARA_20161204T0303Z_D_I-SRF_HANDHELD-BOW-POLE; TARA_20161204T1723Z_D_I-SRF_HANDHELD-BOW-POLE; TARA_20161228T0551Z_D_I-SRF_HANDHELD-BOW-POLE; TARA_20161228T2150Z_D_I-SRF_HANDHELD-BOW-POLE; TARA_20161229T2310Z_D_I-SRF_HANDHELD-BOW-POLE; TARA_20170103T0931Z_N_I-SRF_HANDHELD-BOW-POLE; TARA_20170103T2210Z_D_I-SRF_HANDHELD-BOW-POLE; TARA_20170104T2118Z_D_O-SRF_HANDHELD-BOW-POLE; TARA_20170105T2251Z_D_O-SRF_HANDHELD-BOW-POLE; TARA_20170106T0955Z_N_I-SRF_HANDHELD-BOW-POLE; TARA_20170106T2245Z_D_I-SRF_HANDHELD-BOW-POLE; TARA_20170112T0647Z_D_I-SRF_HANDHELD-BOW-POLE; TARA_20170112T2125Z_D_I-SRF_HANDHELD-
    Type: Dataset
    Format: text/tab-separated-values, 14588 data points
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 6
    Publication Date: 2016-12-01
    Description: Nearly all iron dissolved in the ocean is complexed by strong organic ligands of unknown composition. The effect of ligand composition on microbial iron acquisition is poorly understood, but amendment experiments using model ligands show they can facilitate or impede iron uptake depending on their identity. Here we show that siderophores, organic compounds synthesized by microbes to facilitate iron uptake, are a dynamic component of the marine ligand pool in the eastern tropical Pacific Ocean. Siderophore concentrations in iron-deficient waters averaged 9 pM, up to fivefold higher than in iron-rich coastal and nutrient-depleted oligotrophic waters, and were dominated by amphibactins, amphiphilic siderophores with cell membrane affinity. Phylogenetic analysis of amphibactin biosynthetic genes suggests that the ability to produce amphibactins has transferred horizontally across multiple Gammaproteobacteria, potentially driven by pressures to compete for iron. In coastal and oligotrophic regions of the eastern Pacific Ocean, amphibactins were replaced with lower concentrations (1–2 pM) of hydrophilic ferrioxamine siderophores. Our results suggest that organic ligand composition changes across the surface ocean in response to environmental pressures. Hydrophilic siderophores are predominantly found across regions of the ocean where iron is not expected to be the limiting nutrient for the microbial community at large. However, in regions with intense competition for iron, some microbes optimize iron acquisition by producing siderophores that minimize diffusive losses to the environment. These siderophores affect iron bioavailability and thus may be an important component of the marine iron cycle.
    Print ISSN: 0027-8424
    Electronic ISSN: 1091-6490
    Topics: Biology , Medicine , Natural Sciences in General
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 7
    Publication Date: 2020-06-23
    Description: Despite very low concentrations of cobalt in marine waters, cyanobacteria in the genusProchlorococcusretain the genetic machinery for the synthesis and use of cobalt-bearing cofactors (cobalamins) in their genomes. We explore cobalt metabolism in aProchlorococcusisolate from the equatorial Pacific Ocean (strain MIT9215) through a series of growth experiments under iron- and cobalt-limiting conditions. Metal uptake rates, quantitative proteomic measurements of cobalamin-dependent enzymes, and theoretical calculations all indicate thatProchlorococcusMIT9215 can sustain growth with less than 50 cobalt atoms per cell, ∼100-fold lower than minimum iron requirements for these cells (∼5,100 atoms per cell). Quantitative descriptions ofProchlorococcuscobalt limitation are used to interpret the cobalt distribution in the equatorial Pacific Ocean, where surface concentrations are among the lowest measured globally butProchlorococcusbiomass is high. A low minimum cobalt quota ensures that other nutrients, notably iron, will be exhausted before cobalt can be fully depleted, helping to explain the persistence of cobalt-dependent metabolism in marine cyanobacteria.
    Print ISSN: 0027-8424
    Electronic ISSN: 1091-6490
    Topics: Biology , Medicine , Natural Sciences in General
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 8
  • 9
    Publication Date: 2018-04-01
    Print ISSN: 0886-6236
    Electronic ISSN: 1944-9224
    Topics: Biology , Chemistry and Pharmacology , Geography , Geosciences , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 10
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...