ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    facet.materialart.
    Unknown
    In:  Pageoph, Amsterdam, Elsevier Scientific Publishing Company, vol. 158, no. 1-2, pp. 291-317, pp. L23303
    Publication Date: 2001
    Keywords: Seismology ; Location ; Teleseismic events ; Three dimensional ; P-waves ; Modelling ; Nuclear explosion ; PAG ; Dziewonski
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    facet.materialart.
    Unknown
    American Association for the Advancement of Science (AAAS)
    Publication Date: 2003-09-27
    Description: We have detected dozens of previously unknown, moderate earthquakes beneath large glaciers. The seismic radiation from these earthquakes is depleted at high frequencies, explaining their nondetection by traditional methods. Inverse modeling of the long-period seismic waveforms from the best-recorded earthquake, in southern Alaska, shows that the seismic source is well represented by stick-slip, downhill sliding of a glacial ice mass. The duration of sliding in the Alaska earthquake is 30 to 60 seconds, about 15 to 30 times longer than for a regular tectonic earthquake of similar magnitude.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Ekstrom, Goran -- Nettles, Meredith -- Abers, Geoffrey A -- New York, N.Y. -- Science. 2003 Oct 24;302(5645):622-4. Epub 2003 Sep 25.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Earth and Planetary Sciences, Harvard University, 20 Oxford Street, Cambridge, MA 02138, USA. ekstrom@seismology.harvard.edu〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/14512505" target="_blank"〉PubMed〈/a〉
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2006-03-25
    Description: Some glaciers and ice streams periodically lurch forward with sufficient force to generate emissions of elastic waves that are recorded on seismometers worldwide. Such glacial earthquakes on Greenland show a strong seasonality as well as a doubling of their rate of occurrence over the past 5 years. These temporal patterns suggest a link to the hydrological cycle and are indicative of a dynamic glacial response to changing climate conditions.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Ekstrom, Goran -- Nettles, Meredith -- Tsai, Victor C -- New York, N.Y. -- Science. 2006 Mar 24;311(5768):1756-8.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Earth and Planetary Sciences, Harvard University, 20 Oxford Street, Cambridge, MA 02138, USA. ekstrom@seismology.harvard.edu〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/16556839" target="_blank"〉PubMed〈/a〉
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
    Publication Date: 2005-05-21
    Description: The two largest earthquakes of the past 40 years ruptured a 1600-kilometer-long portion of the fault boundary between the Indo-Australian and southeastern Eurasian plates on 26 December 2004 [seismic moment magnitude (Mw) = 9.1 to 9.3] and 28 March 2005 (Mw = 8.6). The first event generated a tsunami that caused more than 283,000 deaths. Fault slip of up to 15 meters occurred near Banda Aceh, Sumatra, but to the north, along the Nicobar and Andaman Islands, rapid slip was much smaller. Tsunami and geodetic observations indicate that additional slow slip occurred in the north over a time scale of 50 minutes or longer.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Lay, Thorne -- Kanamori, Hiroo -- Ammon, Charles J -- Nettles, Meredith -- Ward, Steven N -- Aster, Richard C -- Beck, Susan L -- Bilek, Susan L -- Brudzinski, Michael R -- Butler, Rhett -- DeShon, Heather R -- Ekstrom, Goran -- Satake, Kenji -- Sipkin, Stuart -- New York, N.Y. -- Science. 2005 May 20;308(5725):1127-33.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Earth Sciences Department, University of California, Santa Cruz, CA 95064, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/15905392" target="_blank"〉PubMed〈/a〉
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 5
    facet.materialart.
    Unknown
    American Association for the Advancement of Science (AAAS)
    Publication Date: 2013-03-23
    Description: Catastrophic landslides involve the acceleration and deceleration of millions of tons of rock and debris in response to the forces of gravity and dissipation. Their unpredictability and frequent location in remote areas have made observations of their dynamics rare. Through real-time detection and inverse modeling of teleseismic data, we show that landslide dynamics are primarily determined by the length scale of the source mass. When combined with geometric constraints from satellite imagery, the seismically determined landslide force histories yield estimates of landslide duration, momenta, potential energy loss, mass, and runout trajectory. Measurements of these dynamical properties for 29 teleseismogenic landslides are consistent with a simple acceleration model in which height drop and rupture depth scale with the length of the failing slope.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Ekstrom, Goran -- Stark, Colin P -- New York, N.Y. -- Science. 2013 Mar 22;339(6126):1416-9. doi: 10.1126/science.1232887.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Lamont-Doherty Earth Observatory of Columbia University, Palisades, NY 10964, USA. ekstrom@ldeo.columbia.edu〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/23520108" target="_blank"〉PubMed〈/a〉
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 6
    Publication Date: 2017-09-10
    Description: This study analyzes surface displacements generated by a low magnitude crustal earthquake in the Ecuadorian Andes by combining analysis of SAR Interferometry, geological field investigations and seismological data. In March 2010, a significant surface faulting event occurred in the Pisayambo area (Eastern cordillera), along the major dextral fault zone bounding the North Andean Sliver and the South-America Plate. Interferograms were inverted to determine fault plane geometry and slip displacement distribution. The event affected a 9 km-long previously unknown fault, referred as the Laguna Pisayambo Fault (LPF), with purely dextral movement reaching 45 cm and concentrated in the top 3 km of the crust. Geological investigations confirm both the fault mechanism and the amplitude of displacements. While these large displacements would be related to an event with a magnitude of 5.44 if using a standard crustal rigidity, we show that they can be convincingly associated with an Mw5.0 earthquake, that occurred on 2010/03/26. Reconciling the apparent differences in magnitude requires the existence of a low rigidity medium at shallow depths and/or postseismic activity of the fault. However, considering only the latter hypothesis would imply an unusually active postseismic process, in which  400-500% of the coseismic moment is released in the 6 days following the earthquake. Our observations highlight that the scaling laws relating surface observations to earthquake magnitude, classically used for seismic hazard assessment, should be carefully used. This study also illustrates how systematic InSAR analysis, even in places where no clues of ground deformation are present, can reveal tectonic processes.
    Print ISSN: 0148-0227
    Topics: Geosciences , Physics
    Published by Wiley on behalf of American Geophysical Union (AGU).
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 7
    Publication Date: 1989-05-01
    Print ISSN: 0027-8424
    Electronic ISSN: 1091-6490
    Topics: Biology , Medicine , Natural Sciences in General
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 8
    Publication Date: 2014-10-04
    Description: We examine the effect of overtone interference on fundamental-mode Love-wave phase measurements made using single-station and array-based techniques at 25–100 s periods. For single-station teleseismic measurements on USArray Transportable Array data, the contamination effects are small, less than 1% of the path-averaged phase velocity, consistent with previous studies. Single-station amplitude measurements provide complementary constraints on the interference pattern. For array-based measurements on the same data set, contamination effects are much larger: up to ~10% of the phase velocity for two-station measurements and up to ~20% for mini-array measurements. The interference pattern for single-station measurements from shallow earthquakes can largely be explained by interactions between only two modes, the fundamental mode and the first higher mode. This interpretation is confirmed using measurements on both mode-summation synthetic waveforms for a 1D Earth model and synthetic waveforms calculated using SPECFEM3D Globe and a 3D Earth model. Array-based phase measurements are calculated from differences of the single-station phase delays, and we demonstrate that the overtone interference pattern for array-based measurements can be approximated using gradients of the single-station interference pattern with distance. This relationship can lead to an overall bias to higher phase velocities when combined with common quality selection and data-reduction procedures for array measurements. Our results indicate that array-based Love-wave phase measurements must be carefully scrutinized for overtone contamination and suggest the possibility of new approaches for measuring overtone phase velocities.
    Print ISSN: 0037-1106
    Electronic ISSN: 1943-3573
    Topics: Geosciences , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 9
    Publication Date: 2014-10-19
    Description: We use normal-mode splitting functions in addition to surface wave phase anomalies, body wave traveltimes and long-period waveforms to construct a 3-D model of anisotropic shear wave velocity in the Earth's mantle. Our modelling approach inverts for mantle velocity and anisotropy as well as transition-zone discontinuity topographies, and incorporates new crustal corrections for the splitting functions that are consistent with the non-linear corrections we employ for the waveforms. Our preferred anisotropic model, S362ANI+M, is an update to the earlier model S362ANI, which did not include normal-mode splitting functions in its derivation. The new model has stronger isotropic velocity anomalies in the transition zone and slightly smaller anomalies in the lowermost mantle, as compared with S362ANI. The differences in the mid- to lowermost mantle are primarily restricted to features in the Southern Hemisphere. We compare the isotropic part of S362ANI+M with other recent global tomographic models and show that the level of agreement is higher now than in the earlier generation of models, especially in the transition zone and the lower mantle. The anisotropic part of S362ANI+M is restricted to the upper 300 km in the mantle and is similar to S362ANI. When radial anisotropy is allowed throughout the mantle, large-scale anisotropic patterns are observed in the lowermost mantle with v SV  〉  v SH beneath Africa and South Pacific and v SH  〉  v SV beneath several circum-Pacific regions. The transition zone exhibits localized anisotropic anomalies of ~3 per cent v SH  〉  v SV beneath North America and the Northwest Pacific and ~2 per cent v SV  〉  v SH beneath South America. However, small improvements in fits to the data on adding anisotropy at depth leave the question open on whether large-scale radial anisotropy is required in the transition zone and in the lower mantle. We demonstrate the potential of mode-splitting data in reducing the trade-offs between isotropic velocity and anisotropy in the lowermost mantle for the even-degree variations. Spurious anisotropic variations in the mid-mantle are also suppressed with the addition of mode-splitting data.
    Keywords: Seismology
    Print ISSN: 0956-540X
    Electronic ISSN: 1365-246X
    Topics: Geosciences
    Published by Oxford University Press on behalf of The Deutsche Geophysikalische Gesellschaft (DGG) and the Royal Astronomical Society (RAS).
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 10
    Publication Date: 2017-02-03
    Description: We investigate a large rockfall that occurred along the cliffs of the Hudson River Palisades, United States, on 12 May 2012, using seismic signals recorded at a distance of about 2 km. A rockfall involves a combination of rock detachment, acceleration, impact, and settling motion, each of which involves forces that load and unload the Earth and generate seismic waves. We characterize different phases in the seismograms and associate them with specific stages of the rockfall. Using the analytical solution to Lamb’s problem, we simulate the seismic-wave propagation between the event and seismic station taking into account the elastic properties of the crust in the Palisades region. The dynamics and the source history of the Palisades rockfall are reconstructed by analyzing the characteristics of the seismic signal. From the modeled force history, we infer that the bulk of the mass detached from about 30 m above the highest part of the riverbank and that lower bounds of the mobilized mass and volume are 3.1 x 10 4 metric tons and 1.1 x 10 4 m 3 , respectively.
    Print ISSN: 0037-1106
    Electronic ISSN: 1943-3573
    Topics: Geosciences , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...