ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    ISSN: 1476-4687
    Source: Nature Archives 1869 - 2009
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Notes: [Auszug] Comprehensive analyses of remote sensing data during the three-year effort to select the Mars Exploration Rover landing sites at Gusev crater and at Meridiani Planum correctly predicted the atmospheric density profile during entry and descent and the safe and trafficable surfaces explored by the ...
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    facet.materialart.
    Unknown
    Geological Society of America (GSA)
    In: Geology
    Publication Date: 2015-09-15
    Description: On Earth, carbon sequestration in geologic units plays an important role in the carbon cycle, scrubbing CO 2 from the atmosphere for long-term storage. While carbonate is identified in low abundances within the dust and soils of Mars, at 〈1 wt% in select meteorites, and in limited outcrops, no massive carbonate rock reservoir on Mars has been identified to date. Here, we investigate the largest exposed carbonate-bearing rock unit, the Nili Fossae plains, combining spectral, thermophysical, and morphological analyses to evaluate the timing and carbon sequestration potential of rocks on Mars. We find that the olivine-enriched (~20%–25%) basalts have been altered, by low-temperature in situ carbonation processes, to at most ~20% Fe-Mg carbonate, thus limiting carbon sequestration in the Nili Fossae region to ~0.25–12 mbar of CO 2 during the late Noachian–early Hesperian, before or concurrent with valley network formation. While this is large compared to modern-day CO 2 reservoirs, the lack of additional, comparably sized post–late Noachian carbonate-bearing deposits on Mars indicates ineffective carbon sequestration in rock units over the past ~3.7 b.y. This implies a thin atmosphere (500 mbar) during valley network formation, extensive post-Noachian atmospheric loss to space, or diffuse, deep sequestration by a yet-to-be understood process. In stark contrast to Earth’s biologically mediated crust:atmosphere carbon reservoir ratio of ~10 4 –10 5 , Mars’ ratio is a mere ~10–10 3 , even if buried pre-Noachian crust holds multiple bars.
    Print ISSN: 0091-7613
    Electronic ISSN: 1943-2682
    Topics: Geosciences
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2016-07-02
    Description: Cross crater is a 65 km impact crater, located in the Noachian highlands of the Terra Sirenum region of Mars (30°S, 158°W), which hosts aluminum phyllosilicate deposits first detected by the Observatoire pour la Minéralogie, L’Eau, les Glaces et l’Activitié (OMEGA) imaging spectrometer on Mars Express. Using high-resolution data from the Mars Reconnaissance Orbiter, we examine Cross crater’s basin-filling sedimentary deposits. Visible/shortwave infrared (VSWIR) spectra from the Compact Reconnaissance Imaging Spectrometer for Mars (CRISM) show absorptions diagnostic of alunite. Combining spectral data with high-resolution images, we map a large (10 km x 5 km) alunite-bearing deposit in southwest Cross crater, widespread kaolin-bearing sediments with variable amounts of alunite that are layered in 〈10 m scale beds, and silica- and/or montmorillonite-bearing deposits that occupy topographically lower, heavily fractured units. The secondary minerals are found at elevations ranging from 700 to 1550 m, forming a discontinuous ring along the crater wall beneath darker capping materials. The mineralogy inside Cross crater is different from that of the surrounding terrains and other martian basins, where Fe/Mg-phyllosilicates and Ca/Mg-sulfates are commonly found. Alunite in Cross crater indicates acidic, sulfurous waters at the time of its formation. Waters in Cross crater were likely supplied by regionally upwelling groundwaters as well as through an inlet valley from a small adjacent depression to the east, perhaps occasionally forming a lake or series of shallow playa lakes in the closed basin. Like nearby Columbus crater, Cross crater exhibits evidence for acid sulfate alteration, but the alteration in Cross is more extensive/complete. The large but localized occurrence of alunite suggests a localized, high-volume source of acidic waters or vapors, possibly supplied by sulfurous (H 2 S- and/or SO 2 -bearing) waters in contact with a magmatic source, upwelling steam or fluids through fracture zones. The unique, highly aluminous nature of the Cross crater deposits relative to other martian acid sulfate deposits indicates acid waters, high water throughput during alteration, atypically glassy and/or felsic materials, or a combination of these conditions.
    Print ISSN: 0003-004X
    Electronic ISSN: 1945-3027
    Topics: Geosciences
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
    Publication Date: 2016-09-02
    Description: The dwarf planet Ceres is known to host phyllosilicate minerals at its surface, but their distribution and origin have not previously been determined. We used the spectrometer onboard the Dawn spacecraft to map their spatial distribution on the basis of diagnostic absorption features in the visible and near-infrared spectral range (0.25 to 5.0 micrometers). We found that magnesium- and ammonium-bearing minerals are ubiquitous across the surface. Variations in the strength of the absorption features are spatially correlated and indicate considerable variability in the relative abundance of the phyllosilicates, although their composition is fairly uniform. These data, along with the distinctive spectral properties of Ceres relative to other asteroids and carbonaceous meteorites, indicate that the phyllosilicates were formed endogenously by a globally widespread and extensive alteration process.
    Keywords: Planetary Science
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Geosciences , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 5
    Publication Date: 2015-01-21
    Description: Long-runout subaerial landslides (〉50 km) are rare on Earth but are common features shaping Mars’ Valles Marineris troughs. In this study, we investigated the highly debated emplacement mechanisms of these Martian landslides by combining spectral and satellite-image analyses. Our results suggest that hydrated silicates played a decisive role in facilitating landslide transport by lubricating the basal sliding zone. This new understanding implies that clay minerals, generated as a result of water-rock interactions in the Noachian and Hesperian (4.1–3.3 Ga), exert a long-lasting influence on geomorphic processes that shape the surface of the planet.
    Print ISSN: 0091-7613
    Electronic ISSN: 1943-2682
    Topics: Geosciences
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 6
    Publication Date: 2015-04-02
    Description: The Mars Science Laboratory (MSL) rover Curiosity has documented a section of fluvio-lacustrine strata at Yellowknife Bay (YKB), an embayment on the floor of Gale crater, approximately 500 m east of the Bradbury landing site. X-ray diffraction (XRD) data and evolved gas analysis (EGA) data from the CheMin and SAM instruments show that two powdered mudstone samples (named John Klein and Cumberland) drilled from the Sheepbed member of this succession contain up to ~20 wt% clay minerals. A trioctahedral smectite, likely a ferrian saponite, is the only clay mineral phase detected in these samples. Smectites of the two samples exhibit different 001 spacing under the low partial pressures of H 2 O inside the CheMin instrument (relative humidity 〈1%). Smectite interlayers in John Klein collapsed sometime between clay mineral formation and the time of analysis to a basal spacing of 10 Å, but largely remain open in the Cumberland sample with a basal spacing of ~13.2 Å. Partial intercalation of Cumberland smectites by metal-hydroxyl groups, a common process in certain pedogenic and lacustrine settings on Earth, is our favored explanation for these differences. The relatively low abundances of olivine and enriched levels of magnetite in the Sheepbed mudstone, when compared with regional basalt compositions derived from orbital data, suggest that clay minerals formed with magnetite in situ via aqueous alteration of olivine. Mass-balance calculations are permissive of such a reaction. Moreover, the Sheepbed mudstone mineral assemblage is consistent with minimal inputs of detrital clay minerals from the crater walls and rim. Early diagenetic fabrics suggest clay mineral formation prior to lithification. Thermodynamic modeling indicates that the production of authigenic magnetite and saponite at surficial temperatures requires a moderate supply of oxidants, allowing circum-neutral pH. The kinetics of olivine alteration suggest the presence of fluids for thousands to hundreds of thousands of years. Mineralogical evidence of the persistence of benign aqueous conditions at YKB for extended periods indicates a potentially habitable environment where life could establish itself. Mediated oxidation of Fe 2+ in olivine to Fe 3+ in magnetite, and perhaps in smectites provided a potential energy source for organisms.
    Print ISSN: 0003-004X
    Electronic ISSN: 1945-3027
    Topics: Geosciences
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 7
    facet.materialart.
    Unknown
    Geological Society of America (GSA)
    In: Geology
    Publication Date: 2016-05-24
    Print ISSN: 0091-7613
    Electronic ISSN: 1943-2682
    Topics: Geosciences
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 8
    Publication Date: 2016-04-28
    Print ISSN: 0091-7613
    Electronic ISSN: 1943-2682
    Topics: Geosciences
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 9
    Publication Date: 2014-05-16
    Description: Natroalunite containing substantial amounts of Fe occurs as a prominent secondary phase during acid-sulfate alteration of pyroclastic basalts in volcanic fumaroles in Nicaragua and elsewhere, and has been observed in laboratory simulations of acid-sulfate alteration as well. Reaction path models constrained by field and experimental observations predict that Fe-rich natroalunite should also form as a major secondary phase during alteration of martian basalt under similar circumstances. Here, we evaluate the potential to use spectroscopic methods to identify minerals from the alunite group with chemical compositions intermediate between natroalunite and natrojarosite on the surface of Mars, and to remotely infer their Fe contents. X-ray diffraction and spectroscopic measurements (Raman, visible/near infrared, mid-infrared, Mössbauer) were obtained for a suite of synthetic solid solutions with a range of Fe contents ranging from natroalunite to natrojarosite. In the visible/near infrared, minerals with intermediate compositions display several spectral features not evident in end-member spectra that could be used to remotely identify these minerals and infer their composition. In addition, Raman spectra, mid-infrared spectra, and X-ray diffraction peaks all show systematic variation with changing Fe content, indicating that these methods could potentially be used to infer mineral compositions as well. The results suggest that alunite group minerals with intermediate Fe compositions may be able to account for some visible/near-infrared and Mössbauer spectral features from Mars that had previously been unidentified or attributed to other phases. Overall, our findings indicate that consideration of solid solutions may lead to new identifications of alunite group minerals on the surface of Mars, and raise the possibility that minerals with compositions intermediate between natroalunite and natrojarosite may be widely distributed on the planet.
    Print ISSN: 0003-004X
    Electronic ISSN: 1945-3027
    Topics: Geosciences
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 10
    Publication Date: 2017-02-02
    Description: The discovery of Fe, Mg, and Al phyllosilicates on Mars using visible and short-wave infrared (VSWIR) spectroscopy from orbit indicates aqueous alteration of basaltic rocks. Analyses at Gusev Crater by the Spirit rover and Gale Crater by the Curiosity rover have discovered alkaline basaltic rocks. In this work, multiple methods—VSWIR spectroscopy, X-ray diffraction (XRD), and chemical analyses—were used to study a suite of alkaline basalts from San Carlos, Arizona, which have been altered by water in an oxidative, semi-arid environment. As an analog for the weathering of alkaline basaltic rocks on Mars, a suite of rocks visually identified to have different degrees of alteration were characterized to understand the spectral, mineralogical, and chemical trends in alteration as sensed by multiple techniques. Samples with strong 1.9 μm H 2 O-related absorptions in VSWIR commonly exhibited absorption bands at 1.4, 2.2, and/or 2.3 μm, indicating the presence of clay minerals or silica as well as features at 0.5–0.9 μm indicative of ferric iron oxides. Primary mineralogy for all samples, as determined by point analyses with the microprobe and XRD, consisted of olivine, plagioclase, nepheline, augite, and titanomagnetite. Compositional imaging and spot analyses with the microprobe revealed distinct alteration textures and phases, suggesting weathering pathways involving the oxidation of iron in olivine and primary Fe 2+ oxides to form Fe 3+ oxides as well as the formation of aluminum phyllosilicates and magnesium phyllosilicates from feldspars and olivines, respectively, while pyroxene remained relatively unaltered. Bivariate plots of major oxides both from bulk-chemical analysis and microprobe measurements also revealed trends in alkali and silica depletion and calcium enrichment, but there was little chemical fractionation in most of the major oxides. The strength of the 1.9 μm H 2 O absorption, loss on ignition, and depletion in silica and sodium, correlated with increasing alteration. The data sets provide an analog for understanding possible weathering pathways in martian alkaline basalts and thresholds for the detection of aqueous alteration in multiple data sets.
    Print ISSN: 0003-004X
    Electronic ISSN: 1945-3027
    Topics: Geosciences
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...