ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
Collection
Years
  • 1
    facet.materialart.
    Unknown
    In:  EPIC3GeoDarmstadt2010, Jahrestagung der Deutschen Gesellschaft für Geowissenschaften (DGG) und der Geologischen Vereinigung (GV), Darmstadt.-13. October 2010., 10
    Publication Date: 2019-07-17
    Description: CO2-consumption by chemical weathering of silicates and resulting silicate/carbonate weathering ratios influences long-term climate changes. However, little is known of the spatial extension of highly active weathering regions and their proportion of global CO2-consumption. As those regions may be of significant importance for global climate change, global CO2-consumption is calculated here at high resolution, to adequately represent them. In previous studies global CO2-consumption is estimated using two different approaches: i) a reverse approach based on hydrochemical fluxes from large rivers and ii) a forward approach applying spatially explicit a function for CO2-consumption. The first approach results in an estimate without providing a spatial resolution for highly active regions and the second approach applied six lithological classes while including three sediment classes (shale, sandstone and carbonate rock) based at a 1° or 2° grid resolution. It remained uncertain, if the applied lithological classification schemes represent adequately CO2-consumption from sediments on a global scale. This is due to the large variability of sediment properties, their diagenetic history and the contribution from carbonates apparent in silicate dominated lithological classes. To address these issues, a CO2-consumption model, trained at high-resolution data, is applied here to a global vector based lithological map with 15 lithological classes. The calibration data were obtained from areas representing a wide range of weathering rates. Resulting global CO2-consumption by chemical weathering is similar to earlier estimates (237 Mt C a− 1) but the proportion of silicate weathering is 63%, and thus larger than previous estimates (49 to 60%). The application of the enhanced lithological classification scheme reveals that it is important to distinguish among the various types of sedimentary rocks and their diagenetic history to evaluate the spatial distribution of rock weathering. Results highlight the role of hotspots (〉 10 times global average weathering rates) and hyperactive areas (5 to 10 times global average rates). Only 9% of the global exorheic area is responsible for about 50% of CO2-consumption by chemical weathering (or if hotspots and hyperactive areas are considered: 3.4% of exorheic surface area corresponds to 28% of global CO2-consumption). The contribution of endorheic areas to the global CO2-consumption is with 3.7 Mt C a− 1 only minor. A significant impact on the global CO2-consumption rate can be expected if identified highly active areas are affected by changes in the overall spatial patterns of the hydrological cycle due to ongoing global climate change. Specifically if comparing the Last Glacial Maximum with present conditions it is probable that also the global carbon cycle has been affected by those changes. It is expected that results will contribute to improve global carbon and global circulation models.
    Repository Name: EPIC Alfred Wegener Institut
    Type: Conference , notRev
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    facet.materialart.
    Unknown
    In:  EPIC3Geophysical Research Abstracts, 12, EGU2010-7141-1, EGU General Assembly, 2010 p.
    Publication Date: 2019-07-17
    Description: CO2-consumption by chemical weathering of silicates and resulting silicate/carbonate weathering ratios influences the terrestrial lateral inorganic carbon flux to the ocean and long-term climate changes. However, little is known of the spatial extension of highly active weathering regions and their proportion of global CO2-consumption. As those regions may be of significant importance for global climate change, global CO2-consumption is calculated here at high resolution, to adequately represent them. In previous studies global CO2-consumption is estimated using two different approaches: i) a reverse approach based on hydrochemical fluxes from large rivers and ii) a forward approach applying spatially explicit a function for CO2-consumption. The first approach results in an estimate without providing a spatial resolution for highly active regions and the second approach applied six lithological classes while including three sediment classes (shale, sandstone and carbonate rock) based at a 1° or 2° grid resolution. It remained uncertain, if the applied lithological classification schemes represent adequately CO2-consumption from sediments on a global scale (as well as liberation of other elements like phosphorus or silicon by chemical weatheirng). This is due to the large variability of sediment properties, their diagenetic history and the contribution from carbonates apparent in silicate dominated lithological classes. To address these issues, a CO2-consumption model, trained at high-resolution data, is applied here to a global vector based lithological map with 15 lithological classes. The calibration data were obtained from areas representing a wide range of weathering rates. Resulting global CO2-consumption by chemical weathering is similar to earlier estimates (237 MtC/a) but the proportion of silicate weathering is 63%, and thus larger than previous estimates (49 to 60%). The application of the enhanced lithological classification scheme reveals that it is important to distinguish among the various types of sedimentary rocks and their diagenetic history to evaluate the spatial distribution of rock weathering and thus lateral inorganic carbon fluxes. Results highlight the role of hotspots (〉10 times global average weathering rates) and hyperactive areas (5 to 10 times global average rates). Only 9% of the global exorheic area is responsible for about 50% of CO2- consumption by chemical weathering (or if hotspots and hyperactive areas are considered: 3.4% of exorheic surface area corresponds to 28% of global CO2-consumption). The contribution of endorheic areas to the global CO2-consumption is with 3.7 MtC/a only minor. A significant impact on the global CO2-consumption rate can be expected if identified highly active areas are affected by changes in the overall spatial patterns of the hydrological cycle due to ongoing global climate change. Specifically if comparing the Last Glacial Maximum with present conditions it is probable that also the global carbon cycle has been affected by those changes. It is expected that results will contribute to improve global carbon and global circulation models. In addition, recognizing chemical weathering rates and geochemical composition of certain lithological classes may be of value for studies focusing on biological aspects of the carbon cycles (e.g. studies needing information on the abundance of phosphorus or silica in the soil or aquatic system).
    Repository Name: EPIC Alfred Wegener Institut
    Type: Conference , notRev
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2019-07-17
    Repository Name: EPIC Alfred Wegener Institut
    Type: Article , isiRev
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
    Publication Date: 2008-03-27
    Print ISSN: 0029-8549
    Electronic ISSN: 1432-1939
    Topics: Biology
    Published by Springer
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 5
    Publication Date: 2013-05-29
    Description: Past characterizations of the land–ocean continuum were constructed either from a continental perspective through an analysis of watershed river basin properties (COSCATs: COastal Segmentation and related CATchments) or from an oceanic perspective, through a regionalization of the proximal and distal continental margins (LMEs: large marine ecosystems). Here, we present a global-scale coastal segmentation, composed of three consistent levels, that includes the whole aquatic continuum with its riverine, estuarine and shelf sea components. Our work delineates comprehensive ensembles by harmonizing previous segmentations and typologies in order to retain the most important physical characteristics of both the land and shelf areas. The proposed multi-scale segmentation results in a distribution of global exorheic watersheds, estuaries and continental shelf seas among 45 major zones (MARCATS: MARgins and CATchments Segmentation) and 149 sub-units (COSCATs). Geographic and hydrologic parameters such as the surface area, volume and freshwater residence time are calculated for each coastal unit as well as different hypsometric profiles. Our analysis provides detailed insights into the distributions of coastal and continental shelf areas and how they connect with incoming riverine fluxes. The segmentation is also used to re-evaluate the global estuarine CO2 flux at the air–water interface combining global and regional average emission rates derived from local studies.
    Print ISSN: 1027-5606
    Electronic ISSN: 1607-7938
    Topics: Geography , Geosciences
    Published by Copernicus on behalf of European Geosciences Union.
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 6
    Publication Date: 2012-03-27
    Description: Potential evaporation (PET) is one of the main inputs of hydrological models. Yet, there is limited consensus on which PET equation is most applicable in hydrological climate impact assessments. In this study six different methods to derive global scale reference PET daily time series from Climate Forecast System Reanalysis (CFSR) data are compared: Penman-Monteith, Priestley-Taylor and original and re-calibrated versions of the Hargreaves and Blaney-Criddle method. The calculated PET time series are (1) evaluated against global monthly Penman-Monteith PET time series calculated from CRU data and (2) tested on their usability for modeling of global discharge cycles. A major finding is that for part of the investigated basins the selection of a PET method may have only a minor influence on the resulting river flow. Within the hydrological model used in this study the bias related to the PET method tends to decrease while going from PET, AET and runoff to discharge calculations. However, the performance of individual PET methods appears to be spatially variable, which stresses the necessity to select the most accurate and spatially stable PET method. The lowest root mean squared differences and the least significant deviations (95% significance level) between monthly CFSR derived PET time series and CRU derived PET were obtained for a cell-specific re-calibrated Blaney-Criddle equation. However, results show that this re-calibrated form is likely to be unstable under changing climate conditions and less reliable for the calculation of daily time series. Although often recommended, the Penman-Monteith equation applied to the CFSR data did not outperform the other methods in a evaluation against PET derived with the Penman-Monteith equation from CRU data. In arid regions (e.g. Sahara, central Australia, US deserts), the equation resulted in relatively low PET values and, consequently, led to relatively high discharge values for dry basins (e.g. Orange, Murray and Zambezi). Furthermore, the Penman-Monteith equation has a high data demand and the equation is sensitive to input data inaccuracy. Therefore, we recommend the re-calibrated form of the Hargreaves equation which globally gave reference PET values comparable to CRU derived values for multiple climate conditions. The resulting gridded daily PET time series provide a new reference dataset that can be used for future hydrological impact assessments in further research, or more specifically, for the statistical downscaling of daily PET derived from raw GCM data. The dataset can be downloaded from http://opendap.deltares.nl/thredds/dodsC/opendap/deltares/FEWS-IPCC.
    Print ISSN: 1027-5606
    Electronic ISSN: 1607-7938
    Topics: Geography , Geosciences
    Published by Copernicus on behalf of European Geosciences Union.
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 7
    Publication Date: 2013-03-13
    Description: Global-scale water issues such as its availability, water needs or stress, or management, are mapped at various resolutions and reported at many scales, mostly along political or continental boundaries. As such, they ignore the fundamental heterogeneity of hydroclimates and natural boundaries of river basins. Here we describe the continental landmasses at two levels: eight hydrobelts strictly limited by river basins, defined at a 30' (0.5°) resolution, which are decomposed on continents as 26 hydroregions. The belts were defined and delineated, based primarily on the annual average temperature (T) and run-off (q), to maximise inter-belt differences and minimise intra-belt variability. This new global puzzle defines homogeneous and near-contiguous entities with similar hydrological and thermal regimes, glacial and postglacial basin histories, endorheism distribution and sensitivity to climate variations. The mid-latitude, dry and subtropical belts have northern and southern analogues and a general symmetry can be observed for T and q between them. The boreal and equatorial belts are unique. Population density between belts and between the continents varies greatly, resulting in pronounced differences between the belts with analogues in both hemispheres. Hydroregions (median size 4.7 M km2) are highly contrasted, with the average q ranging between 6 and 1393 mm yr−1 and the average T between −9.7 and +26.3 °C, and a population density ranging from 0.7 to 0.8 p km−2 for the North American boreal region and some Australian hydroregions to 280 p km−2 for some Asian hydroregions. The population/run-off ratio, normalised to a reference pristine region, is used to map and quantify the global population at risk of severe water quality degradation. Our initial tests suggest that hydrobelt and hydroregion divisions are often more appropriate than conventional continental or political divisions for the global analysis of river basins within the Earth system and of water resources. The GIS files of the hydrobelts and hydroregions are available at the supplement of this article and at doi:10.1594/PANGAEA.806957 as well as geotypes.net.
    Print ISSN: 1027-5606
    Electronic ISSN: 1607-7938
    Topics: Geography , Geosciences
    Published by Copernicus on behalf of European Geosciences Union.
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 8
    Publication Date: 2012-10-04
    Description: The complex coastline of the Earth is over 400 000 km long and about 40% of the world's population lives within 100 km of the sea. Past characterizations of the global coastline were constructed either from a continental perspective through an analysis of watershed river basin properties (COSCAT: Coastal Segmentation and related CATchments) or from an oceanic perspective, through a regionalization of the proximal and distal continental margins (LME: Large Marine Ecosystems). Here, we present a global-scale coastal segmentation, composed of three consistent levels, that includes the whole aquatic continuum with its riverine, estuarine and shelf sea components. Our work delineates comprehensive ensembles which retain the most important physical characteristics of both the land and shelf areas. The proposed multi-scale segmentation results in a distribution of global exorheic watersheds, estuaries and continental shelf seas among 45 major zones (MARCATS: MARgins and CATchments Segmentation) and 149 sub-units (COSCATS). Geographic and hydrologic parameters such as the surface area, volume and fresh water residence time are calculated for each coastal unit as well as different hypsometric profiles. Our analysis provides detailed insights into the distributions of coastal and continental shelf areas and how they connect with incoming riverine fluxes. These results can be used for regional analyses and combined with various typologies for upscaling and biogeochemical budgets. In addition, the three levels segmentation can be used for application in Earth System analysis.
    Print ISSN: 1812-2108
    Electronic ISSN: 1812-2116
    Topics: Geography , Geosciences
    Published by Copernicus on behalf of European Geosciences Union.
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 9
    Publication Date: 2011-07-28
    Description: Potential evaporation (PET) is one of the main inputs of hydrological models. Yet, there is limited consensus on which PET equation is most applicable in hydrological climate impact assessments. In this study six different methods to derive global scale reference PET time series from CFSR reanalysis data are compared: Penman-Monteith, Priestley-Taylor and original and modified versions of the Hargreaves and Blaney-Criddle method. The calculated PET time series are (1) evaluated against global monthly Penman-Monteith PET time series calculated from CRU data and (2) tested on their usability for modeling of global discharge cycles. The lowest root mean squared differences and the least significant deviations (95 % significance level) between monthly CFSR derived PET time series and CRU derived PET were obtained for the cell specific modified Blaney-Criddle equation. However, results show that this modified form is likely to be unstable under changing climate conditions and less reliable for the calculation of daily time series. Although often recommended, the Penman-Monteith equation did not outperform the other methods. In arid regions (e.g., Sahara, central Australia, US deserts), the equation resulted in relatively low PET values and, consequently, led to relatively high discharge values for dry basins (e.g., Orange, Murray and Zambezi). Furthermore, the Penman-Monteith equation has a high data demand and the equation is sensitive to input data inaccuracy. Therefore, we preferred the modified form of the Hargreaves equation, which globally gave reference PET values comparable to CRU derived values. Although it is a relative efficient empirical equation, like Blaney-Criddle, the equation considers multiple spatial varying meteorological variables and consequently performs well for different climate conditions. In the modified form of the Hargreaves equation the multiplication factor is uniformly increased from 0.0023 to 0.0031 to overcome the global underestimation of CRU derived PET obtained with the original equation. It should be noted that the bias in PET is not linearly transferred to actual evapotranspiration and runoff, due to limited soil moisture availability and precipitation. The resulting gridded daily PET time series provide a new reference dataset that can be used for future hydrological impact assessments or, more specifically, for the statistical downscaling of daily PET derived from raw GCM data.
    Print ISSN: 1812-2108
    Electronic ISSN: 1812-2116
    Topics: Geography , Geosciences
    Published by Copernicus on behalf of European Geosciences Union.
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 10
    Publication Date: 2012-08-03
    Description: Questions related to water such as its availability, water needs or stress, or management, are mapped at various resolutions at the global scale. They are reported at many scales, mostly along political or continental boundaries. As such, they ignore the fundamental heterogeneity of the hydroclimate and the natural boundaries of the river basins. Here, we describe the continental landmasses according to eight global-scale hydrobelts strictly limited by river basins, defined at a 30′ (0.5°) resolution. The belts were defined and delineated, based primarily on the annual average temperature (T) and runoff (q), to maximise interbelt differences and minimise intrabelt variability. The belts were further divided into 29 hydroregions based on continental limits. This new global puzzle defines homogeneous and near-contiguous entities with similar hydrological and thermal regimes, glacial and postglacial basin histories, endorheism distribution and sensitivity to climate variations. The Mid-Latitude, Dry and Subtropical belts have northern and southern analogues and a general symmetry can be observed for T and q between them. The Boreal and Equatorial belts are unique. The hydroregions (median size 4.7 Mkm2) contrast strongly, with the average q ranging between 6 and 1393 mm yr−1 and the average T between −9.7 and +26.3 °C. Unlike the hydroclimate, the population density between the North and South belts and between the continents varies greatly, resulting in pronounced differences between the belts with analogues in both hemispheres. The population density ranges from 0.7 to 0.8 p km−2 for the North American Boreal and some Australian hydroregions to 280 p km−2 for the Asian part of the Northern Mid-Latitude belt. The combination of population densities and hydroclimate features results in very specific expressions of water-related characteristics in each of the 29 hydroregions. Our initial tests suggest that hydrobelt and hydroregion divisions are often more appropriate for water-relative global analysis and reporting than conventional continental or political divisions.
    Print ISSN: 1812-2108
    Electronic ISSN: 1812-2116
    Topics: Geography , Geosciences
    Published by Copernicus on behalf of European Geosciences Union.
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...