ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • Computer Systems  (28)
  • Space Communications, Spacecraft Communications, Command and Tracking  (13)
  • 1
    Publication Date: 2019-07-13
    Description: In this paper, we propose a distributed approach for mapping a single large application to a heterogeneous grid environment. To minimize the execution time of the parallel application, we distribute the mapping overhead to the available nodes of the grid. This approach not only provides a fast mapping of tasks to resources but is also scalable. We adopt a hierarchical grid model and accomplish the job of mapping tasks to this topology using a scheduler tree. Results show that our three-phase algorithm provides high quality mappings, and is fast and scalable.
    Keywords: Computer Systems
    Type: IEEE 5th International Conference on Cluster Computing; Dec 01, 2003 - Dec 04, 2003; Hong Kong; China
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2019-07-13
    Description: The ability of computers to solve hitherto intractable problems and simulate complex processes using mathematical models makes them an indispensable part of modern science and engineering. Computer simulations of large-scale realistic applications usually require solving a set of non-linear partial differential equations (PDES) over a finite region. For example, one thrust area in the DOE Grand Challenge projects is to design future accelerators such as the SpaHation Neutron Source (SNS). Our colleagues at SLAC need to model complex RFQ cavities with large aspect ratios. Unstructured grids are currently used to resolve the small features in a large computational domain; dynamic mesh adaptation will be added in the future for additional efficiency. The PDEs for electromagnetics are discretized by the FEM method, which leads to a generalized eigenvalue problem Kx = AMx, where K and M are the stiffness and mass matrices, and are very sparse. In a typical cavity model, the number of degrees of freedom is about one million. For such large eigenproblems, direct solution techniques quickly reach the memory limits. Instead, the most widely-used methods are Krylov subspace methods, such as Lanczos or Jacobi-Davidson. In all the Krylov-based algorithms, sparse matrix-vector multiplication (SPMV) must be performed repeatedly. Therefore, the efficiency of SPMV usually determines the eigensolver speed. SPMV is also one of the most heavily used kernels in large-scale numerical simulations.
    Keywords: Computer Systems
    Type: Irregular; May 01, 2000; Cancun; Mexico
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2019-07-13
    Description: Classical mesh partitioning algorithms were designed for rather static situations, and their straightforward application in a dynamical framework may lead to unsatisfactory results, e.g., excessive data migration among processors. Furthermore, special attention should be paid to their amenability to parallelization. In this paper, a novel parallel method for the dynamic partitioning of adaptive unstructured meshes is described. It is based on a linear representation of the mesh using self-avoiding walks.
    Keywords: Computer Systems
    Type: IPPS''99; Apr 12, 1999 - Apr 16, 1999; San Juan; Puerto Rico
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
    Publication Date: 2019-07-13
    Description: The NASA/JPL Optical Communication Telescope Laboratory (OCTL) was built for dedicated research and development toward supporting free-space laser communications from space. Recently, the OCTL telescope was used to support the Lunar Laser Communication Demonstration (LLCD) from the Lunar Atmospheric Dust Environment Explorer (LADEE) spacecraft and is planned for use with the upcoming Optical Payload for Lasercomm Science (OPALS) demonstration from the International Space Station (ISS). The use of OCTL to support these demonstrations is discussed in this report. The discussion will feed forward to ongoing and future space-to-ground laser communications as it advances toward becoming an operational capability.
    Keywords: Space Communications, Spacecraft Communications, Command and Tracking
    Type: SpaceOps 2014; May 05, 2014 - May 09, 2014; Pasadena, CA; United States
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 5
    Publication Date: 2019-07-13
    Description: Objectives of this work are: (1) Investigate methods for quantifying the value of interoperability for deep space missions: A network of optical receive stations Each one potentially owned by a different space agency. Reduces overall cost to any individual agency Provides geographically diverse locations to mitigate weather problems (clouds, wind, rain, dust, etc.) (2) Metrics: a. Total data volume returned over mission duration b. Percent data transferred (PDT) or something similar.
    Keywords: Space Communications, Spacecraft Communications, Command and Tracking
    Type: European Space Agency Optical Link Study Group; Apr 01, 2012; Darmstadt; Germany
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 6
    Publication Date: 2019-07-13
    Description: A number of space agencies, including NASA, are considering free-space laser communications as a means for returning higher data-rates from future space missions. In this paper, potential deep-space missions are evaluated to show that with optical communication a 10x increase relative to state-of-the art telecommunication systems could be achieved. The maximum deep-space distance where ground transmitted laser beacons could assist acquisition and tracking; and operating points where optical communication performance degrades faster than the inverse square distance are also discussed.
    Keywords: Space Communications, Spacecraft Communications, Command and Tracking
    Type: SPIE Photonics West; Jan 21, 2012 - Jan 26, 2012; San Francisco, CA; United States
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 7
    Publication Date: 2019-07-13
    Description: In this paper we study the performance of the Lustre file system using five scientific and engineering applications representative of NASA workload on large-scale supercomputing systems such as NASA s Pleiades. In order to facilitate the collection of Lustre performance metrics, we have developed a software tool that exports a wide variety of client and server-side metrics using SGI's Performance Co-Pilot (PCP), and generates a human readable report on key metrics at the end of a batch job. These performance metrics are (a) amount of data read and written, (b) number of files opened and closed, and (c) remote procedure call (RPC) size distribution (4 KB to 1024 KB, in powers of 2) for I/O operations. RPC size distribution measures the efficiency of the Lustre client and can pinpoint problems such as small write sizes, disk fragmentation, etc. These extracted statistics are useful in determining the I/O pattern of the application and can assist in identifying possible improvements for users applications. Information on the number of file operations enables a scientist to optimize the I/O performance of their applications. Amount of I/O data helps users choose the optimal stripe size and stripe count to enhance I/O performance. In this paper, we demonstrate the usefulness of this tool on Pleiades for five production quality NASA scientific and engineering applications. We compare the latency of read and write operations under Lustre to that with NFS by tracing system calls and signals. We also investigate the read and write policies and study the effect of page cache size on I/O operations. We examine the performance impact of Lustre stripe size and stripe count along with performance evaluation of file per process and single shared file accessed by all the processes for NASA workload using parameterized IOR benchmark.
    Keywords: Computer Systems
    Type: ARC-E-DAA-TN6025 , HiPC 2012; Dec 18, 2012 - Dec 21, 2012; Pune; India
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 8
    Publication Date: 2019-07-13
    Description: The high performance computing (HPC) community has shown tremendous interest in exploring cloud computing as it promises high potential. In this paper, we examine the feasibility, performance, and scalability of production quality scientific and engineering applications of interest to NASA on NASA's cloud computing platform, called Nebula, hosted at Ames Research Center. This work represents the comprehensive evaluation of Nebula using NUTTCP, HPCC, NPB, I/O, and MPI function benchmarks as well as four applications representative of the NASA HPC workload. Specifically, we compare Nebula performance on some of these benchmarks and applications to that of NASA s Pleiades supercomputer, a traditional HPC system. We also investigate the impact of virtIO and jumbo frames on interconnect performance. Overall results indicate that on Nebula (i) virtIO and jumbo frames improve network bandwidth by a factor of 5x, (ii) there is a significant virtualization layer overhead of about 10% to 25%, (iii) write performance is lower by a factor of 25x, (iv) latency for short MPI messages is very high, and (v) overall performance is 15% to 48% lower than that on Pleiades for NASA HPC applications. We also comment on the usability of the cloud platform.
    Keywords: Computer Systems
    Type: ARC-E-DAA-TN5169 , 14th IEEE International Conferenc eon HPCC-2012; Jun 25, 2012; Liverpool; United Kingdom
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 9
    Publication Date: 2019-07-13
    Description: A conceptual design study titled Deep-Space Optical Terminals was recently completed for an optical communication technology demonstration from Mars in the 2018 time frame. We report on engineering trades for the entire system, and for individual subsystems including the flight terminal, the ground receiver and the ground transmitter. A point design is described to meet the requirement for greater than 0.25 Gb/s downlink from the nearest distance to Mars of 0.42 AU with a maximum mass and power allocation of 40 kg and 110 W. Furthermore, the concept design addresses link closure at the farthest Mars range of 2.7 AU. Maximum uplink data-rate of 0.3 Mb/s and ranging with 30 cm precision are also addressed.
    Keywords: Space Communications, Spacecraft Communications, Command and Tracking
    Type: Photonics West - Free Space Optical Communications; Jan 22, 2011 - Jan 27, 2011; San Francisco, CA; United States
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 10
    Publication Date: 2019-07-13
    Description: A lunar surface systems study explores the application of optical communications to support a high bandwidth data link from a lunar relay satellite and from fixed lunar assets. The results show that existing 1-m ground stations could provide more than 99% coverage of the lunar terminal at 100Mb/s data rates from a lunar relay satellite and in excess of 200Mb/s from a fixed terminal on the lunar surface. We have looked at the effects of the lunar regolith and its removal on optical samples. Our results indicate that under repeated dust removal episodes sapphire rather than fused silica would be a more durable material for optical surfaces. Disruption tolerant network protocols can minimize the data loss due to link dropouts. We report on the preliminary results of the DTN protocol implemented over the optical carrier.
    Keywords: Space Communications, Spacecraft Communications, Command and Tracking
    Type: 2011 IEEE International Conference on Space Optical Systems and Applications (ICSOS); May 11, 2011 - May 13, 2011; Santa Monica, CA; United States
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...