ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Publication Date: 2022-05-25
    Description: Author Posting. © American Meteorological Society, 2015. This article is posted here by permission of American Meteorological Society for personal use, not for redistribution. The definitive version was published in Journal of Climate 28 (2015): 1126–1147, doi:10.1175/JCLI-D-14-00285.1.
    Description: The local atmospheric response to a realistic shift of the Oyashio Extension SST front in the western North Pacific is analyzed using a high-resolution (HR; 0.25°) version of the global Community Atmosphere Model, version 5 (CAM5). A northward shift in the SST front causes an atmospheric response consisting of a weak surface wind anomaly but a strong vertical circulation extending throughout the troposphere. In the lower troposphere, most of the SST anomaly–induced diabatic heating is balanced by poleward transient eddy heat and moisture fluxes. Collectively, this response differs from the circulation suggested by linear dynamics, where extratropical SST forcing produces shallow anomalous heating balanced by strong equatorward cold air advection driven by an anomalous, stationary surface low to the east. This latter response, however, is obtained by repeating the same experiment except using a relatively low-resolution (LR; 1°) version of CAM5. Comparison to observations suggests that the HR response is closer to nature than the LR response. Strikingly, HR and LR experiments have almost identical vertical profiles of . However, diagnosis of the diabatic quasigeostrophic vertical pressure velocity (ω) budget reveals that HR has a substantially stronger response, which together with upper-level mean differential thermal advection balances stronger vertical motion. The results herein suggest that changes in transient eddy heat and moisture fluxes are critical to the overall local atmospheric response to Oyashio Front anomalies, which may consequently yield a stronger downstream response. These changes may require the high resolution to be fully reproduced, warranting further experiments of this type with other high-resolution atmosphere-only and fully coupled GCMs.
    Description: We gratefully acknowledge funding provided by NSF to DS and MN (AGS CLD 1035325) and Y-OK and CF (AGS CLD 1035423) and by DOE to Y-OK (DE-SC0007052).
    Description: 2015-08-01
    Keywords: Atmosphere-ocean interaction ; Atmospheric circulation ; Boundary layer ; Cyclogenesis/cyclolysis ; Diabatic heating ; Extratropical cyclones
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2022-05-25
    Description: Author Posting. © American Meteorological Society, 2013. This article is posted here by permission of American Meteorological Society for personal use, not for redistribution. The definitive version was published in Journal of Climate 26 (2013): 9774–9790, doi:10.1175/JCLI-D-12-00862.1.
    Description: The influence of the Atlantic meridional overturning circulation (AMOC) variability on the atmospheric circulation is investigated in a control simulation of the NCAR Community Climate System Model, version 3 (CCSM3), where the AMOC evolves from an oscillatory regime into a red noise regime. In the latter, an AMOC intensification is followed during winter by a positive North Atlantic Oscillation (NAO). The atmospheric response is robust and controlled by AMOC-driven SST anomalies, which shift the heat release to the atmosphere northward near the Gulf Stream/North Atlantic Current. This alters the low-level atmospheric baroclinicity and shifts the maximum eddy growth northward, affecting the storm track and favoring a positive NAO. The AMOC influence is detected in the relation between seasonal upper-ocean heat content or SST anomalies and winter sea level pressure. In the oscillatory regime, no direct AMOC influence is detected in winter. However, an upper-ocean heat content anomaly resembling the AMOC footprint precedes a negative NAO. This opposite NAO polarity seems due to the southward shift of the Gulf Stream during AMOC intensification, displacing the maximum baroclinicity southward near the jet exit. As the mode has somewhat different patterns when using SST, the wintertime impact of the AMOC lacks robustness in this regime. However, none of the signals compares well with the observed influence of North Atlantic SST anomalies on the NAO because SST is dominated in CCSM3 by the meridional shifts of the Gulf Stream/North Atlantic Current that covary with the AMOC. Hence, although there is some potential climate predictability in CCSM3, it is not realistic.
    Description: Support from the NOAA Climate Program Office (Grant Number NA10OAR4310202) and the European Community 7th Framework Programme (FP7 2007-2013) under Grant Agreements GA212643 (THOR) and n.308299 (NACLIM) is gratefully acknowledged.
    Description: 2014-06-15
    Keywords: Atmosphere-ocean interaction ; North Atlantic Oscillation ; Thermohaline circulation ; Decadal variability
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2022-05-25
    Description: Author Posting. © American Meteorological Society, 2018. This article is posted here by permission of American Meteorological Society for personal use, not for redistribution. The definitive version was published in Journal of Climate 31 (2018): 2771-2796, doi:10.1175/JCLI-D-17-0061.1.
    Description: The Generalized Equilibrium Feedback Analysis (GEFA) is used to distinguish the influence of the Oyashio Extension (OE) and the Kuroshio Extension (KE) variability on the atmosphere from 1979 to 2014 from that of the main SST variability modes, using seasonal mean anomalies. Remote SST anomalies are associated with each single oceanic regressor, but the multivariate approach efficiently confines their SST footprints. In autumn [October–December (OND)], the OE meridional shifts are followed by a North Pacific Oscillation (NPO)-like signal. The OE influence is not investigated in winter [December–February (DJF)] because of multicollinearity, but a robust response with a strong signal over the Bering Sea is found in late winter/early spring [February–April (FMA)], a northeastward strengthening of the Aleutian low following a northward OE shift. A robust response to the KE variability is found in autumn, but not in winter and late winter when the KE SST footprint becomes increasingly small and noisy as regressors are added in GEFA. In autumn, a positive PDO is followed by a northward strengthening of the Aleutian low and a southward shift of the storm track in the central Pacific, reflecting the surface heat flux footprint in the central Pacific. In winter, the PDO shifts the maximum baroclinicity and storm track southward, the response strongly tilts westward with height in the North Pacific, and there is a negative NAO-like teleconnection. In late winter, the North Pacific NPO-like response to the PDO interferes negatively with the response to the OE and is only detected when the OE is represented in GEFA. A different PDO influence on the atmospheric circulation is found from 1958 to 1977.
    Description: This research has received funding from the European Union 7th Framework Program (FP7 2007-2013) under Grant Agreement 308299 (NACLIM) and from NSF Grants AGS CLD 1035423 and OCE PO 1242989.
    Keywords: Atmosphere-ocean interaction ; Boundary currents ; Pacific decadal oscillation ; Atmosphere-ocean interaction ; Empirical orthogonal functions ; Regression analysis
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
    Publication Date: 2022-05-26
    Description: Author Posting. © American Meteorological Society, 2020. This article is posted here by permission of American Meteorological Society for personal use, not for redistribution. The definitive version was published in Journal of Climate 33(9), (2020): 3863-3882, doi:10.1175/JCLI-D-19-0687.1.
    Description: The direct response of the cold-season atmospheric circulation to the Arctic sea ice loss is estimated from observed sea ice concentration (SIC) and an atmospheric reanalysis, assuming that the atmospheric response to the long-term sea ice loss is the same as that to interannual pan-Arctic SIC fluctuations with identical spatial patterns. No large-scale relationship with previous interannual SIC fluctuations is found in October and November, but a negative North Atlantic Oscillation (NAO)/Arctic Oscillation follows the pan-Arctic SIC fluctuations from December to March. The signal is field significant in the stratosphere in December, and in the troposphere and tropopause thereafter. However, multiple regressions indicate that the stratospheric December signal is largely due to concomitant Siberian snow-cover anomalies. On the other hand, the tropospheric January–March NAO signals can be unambiguously attributed to SIC variability, with an Iceland high approaching 45 m at 500 hPa, a 2°C surface air warming in northeastern Canada, and a modulation of blocking activity in the North Atlantic sector. In March, a 1°C northern Europe cooling is also attributed to SIC. An SIC impact on the warm Arctic–cold Eurasia pattern is only found in February in relation to January SIC. Extrapolating the most robust results suggests that, in the absence of other forcings, the SIC loss between 1979 and 2016 would have induced a 2°–3°C decade−1 winter warming in northeastern North America and a 40–60 m decade−1 increase in the height of the Iceland high, if linearity and perpetual winter conditions could be assumed.
    Description: This research was supported by the Blue-Action project (European Union’s Horizon 2020 research and innovation program, Grant 727852) and by the National Science Foundation (OPP 1736738).
    Description: 2020-10-06
    Keywords: Atmosphere-ocean interaction ; Climate change ; Climate variability ; Ice loss/growth
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...