ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • Copernicus  (46)
  • 1
    Publication Date: 2007-03-19
    Description: In the present study, ambient aerosol (PM10) concentrations of elemental carbon (EC), organic carbon (OC), and total carbon (TC) are reported for 12 European rural background sites and two urban background sites following a one-year (1 July 2002–1 July 2003) sampling campaign within the European Monitoring and Evaluation Programme, EMEP (http://www.emep.int/). The purpose of the campaign was to assess the feasibility of performing EC and OC monitoring on a regular basis and to obtain an overview of the spatial and seasonal variability on a regional scale in Europe. Analyses were performed using the thermal-optical transmission (TOT) instrument from Sunset Lab Inc., operating according to a NIOSH derived temperature program. The annual mean mass concentration of EC ranged from 0.17±0.19 μg m−3 (mean ± SD) at Birkenes (Norway) to 1.83±1.32 μg m−3 at Ispra (Italy). The corresponding range for OC was 1.20±1.29 μg m−3 at Mace Head (Ireland) to 7.79±6.80 μg m−3 at Ispra. On average, annual concentrations of EC, OC, and TC were three times higher for rural background sites in Central, Eastern and Southern Europe compared to those situated in the Northern and Western parts of Europe. Wintertime concentrations of EC and OC were higher than those recorded during summer for the majority of the sites. Moderate to high Pearson correlation coefficients (rp) (0.50–0.94) were observed for EC versus OC for the sites investigated. The lowest correlation coefficients were noted for the three Scandinavian sites: Aspvreten (SE), Birkenes (NO), and Virolahti (FI), and the Slovakian site Stara Lesna, and are suggested to reflect biogenic sources, wild and prescribed fires. This suggestion is supported by the fact that higher concentrations of OC are observed for summer compared to winter for these sites. For the rural background sites, total carbonaceous material accounted for 30±9% of PM10, of which 27±9% could be attributed to organic matter (OM) and 3.4±1.0% to elemental matter (EM). OM was found to be more abundant than SO42− for sites reporting both parameters.
    Electronic ISSN: 1680-7375
    Topics: Geosciences
    Published by Copernicus on behalf of European Geosciences Union.
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2007-06-13
    Description: Iron is a major component of atmospheric aerosols, influencing the light absorption ability of mineral dust, and an important micronutrient that affects oceanic biogeochemistry. The regional distribution of the iron concentration in dust is important for climate studies; however, this is difficult to obtain since it requires in-situ aerosol sampling or simulation of complex natural processes. Simultaneous studies of aerosol chemical composition and radiometric measurements of aerosol optical properties, which were performed in the Negev desert of Israel continuously for about eight years, suggest a potential for deriving a relationship between chemical composition and light absorption properties, in particular the spectral single-scattering albedo. The two main data sets of the present study were obtained by a sun/sky radiometer and a stacked filter unit sampler that collects particles in coarse and fine size fractions. Analysis of chemical and optical data showed the presence of mixed dust and pollution aerosol in the study area, although their sources appear to be different. Spectral SSA showed an evident response to increased concentrations of iron, black carbon equivalent matter, and their mixing state. An empirical relationship that relates the spectral SSA, the percentage of iron in total particulate mass, and the pollution components was derived. Results calculated using this relationship were compared with measurements from dust episodes in several locations around the globe. The comparison reveals that dust over the eastern Mediterranean and Saudi Arabia contains less iron than that over Asia and the Sahara desert.
    Electronic ISSN: 1680-7375
    Topics: Geosciences
    Published by Copernicus on behalf of European Geosciences Union.
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2006-02-07
    Description: The chemical composition of carbonaceous aerosols collected during the LBA-SMOCC field experiment, conducted in Rondônia, Brazil, in 2002 during the transition from the dry to the wet season, was investigated by a suite of state-of-the-art analytical techniques. The period of most intense biomass burning was characterized by high concentrations of submicron particles rich in carbonaceous material and water-soluble organic compounds (WSOC). At the onset of the rainy period, submicron total carbon (TC) concentrations decreased by about 20 times. In contrast, the concentration of supermicron TC was fairly constant throughout the experiment, pointing to a constant emission of coarse particles from the natural background. About 6–8% of TC (9–11% of WSOC) was speciated at the molecular level by GC-MS and liquid chromatography. Polyhydroxylated compounds, aliphatic and aromatic acids were the main classes of compounds accounted for by individual compound analysis. Functional group analysis by proton NMR and chromatographic separation on ion-exchange columns allowed characterization of ca. 50–90% of WSOC into broad chemical classes (neutral species/light acids/humic-like substances). In spite of the significant change in the chemical composition of tracer compounds from the dry to the wet period, the functional groups and the general chemical classes of WSOC changed only to a small extent. Model compounds representing size-resolved WSOC chemical composition for the different periods of the campaign are then proposed in this paper, based on the chemical characterization by both individual compound analysis and functional group analysis deployed during the LBA-SMOCC experiment. Model compounds reproduce quantitatively the average chemical structure of WSOC and can be used as best-guess surrogates in microphysical models involving organic aerosol particles over tropical areas affected by biomass burning.
    Print ISSN: 1680-7316
    Electronic ISSN: 1680-7324
    Topics: Geosciences
    Published by Copernicus on behalf of European Geosciences Union.
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
    Publication Date: 2008-07-10
    Description: Iron is a major component of atmospheric aerosols, influencing the light absorption ability of mineral dust, and an important micronutrient that affects oceanic biogeochemistry. The regional distribution of the iron concentration in dust is important for climate studies; however, this is difficult to obtain since it requires in-situ aerosol sampling or simulation of complex natural processes. Simultaneous studies of aerosol chemical composition and radiometric measurements of aerosol optical properties, which were performed in the Negev desert of Israel continuously for about eight years, suggest a potential for deriving a relationship between chemical composition and light absorption properties, in particular the spectral single-scattering albedo. The two main data sets of the present study were obtained by a sun/sky radiometer and a stacked filter unit sampler that collects particles in coarse and fine size fractions. Analysis of chemical and optical data showed the presence of mixed dust and pollution aerosol in the study area, although their sources appear to be different. Spectral SSA showed an evident response to increased concentrations of iron, black carbon equivalent matter, and their mixing state. A relationship that relates the spectral SSA, the percentage of iron in total particulate mass, and the pollution components was derived. Results calculated, using this relationship, were compared with measurements from dust episodes in several locations around the globe. The comparison showed reasonable agreement between the calculated and the observed iron concentrations, and supported the validity of the suggested approach for the estimation of iron concentrations in mineral dust.
    Print ISSN: 1680-7316
    Electronic ISSN: 1680-7324
    Topics: Geosciences
    Published by Copernicus on behalf of European Geosciences Union.
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 5
    Publication Date: 2014-08-26
    Description: A comparison exercise on thermal-optical elemental carbon/organic carbon (ECOC) analyzers was carried out among 17 European laboratories. Contrary to previous comparison exercises, the 17 participants made use of an identical instrument set-up, after correcting for temperature offsets with the application of a recently developed temperature calibration kit (Sunset Laboratory Inc, OR, US). Five filter samples and two sucrose solutions were analyzed with both the EUSAAR2 and NIOSH870 thermal protocols. z Scores were calculated for total carbon (TC) and nine outliers and three stragglers were identified. Three outliers and eight stragglers were found for EC. Overall, the participants provided results within the warning levels with the exception of two laboratories that showed poor performance, the causes of which were identified and corrected through the course of the comparison exercise. The TC repeatability and reproducibility relative standard deviations were 11.4 and 14.6% for EUSAAR2 and 9.2 and 11.7% for NIOSH870; the standard deviations for EC were 15.3 and 19.5% for EUSAAR2 and 19.9 and 25.5% for NIOSH870. TC was in good agreement between the two protocols, TCNIOSH870 = 0.98 · TCEUSAAR2 (R2 = 1.00, normalized means). Transmittance (TOT) calculated EC for NIOSH870 was found to be 20% lower than for EUSAAR2, ECNIOSH870 = 0.80 · ECEUSAAR2 (R2 = 0.96, normalized means). The thermograms and laser signal values were compared and similar peak patterns were observed per sample and protocol for most participants. Notable deviations of plotted values indicated absence or inaccurate application of the temperature calibration procedure and/or pre-oxidation during the inert phase of the analysis. Low or no pyrolytic organic carbon (POC), as reported by a few participants, is suggested as an indicator of pre-oxidation. A sample-specific pre-oxidation effect was observed for filter G, for all participants and both thermal protocols, indicating the presence of oxygen donors on the suspended particulate matter. POC (TOT) levels were lower for NIOSH870 than for EUSAAR2, which is related to the heating profile differences of the two thermal protocols.
    Electronic ISSN: 1867-8610
    Topics: Geosciences
    Published by Copernicus on behalf of European Geosciences Union.
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 6
    Publication Date: 2003-09-10
    Description: The cycling of inorganic bromine in the marine boundary layer (mbl) has received increased attention in recent years. Bromide, a constituent of sea water, is injected into the atmosphere in association with sea-salt aerosol by breaking waves on the ocean surface. Measurements reveal that supermicrometer sea-salt aerosol is substantially depleted in bromine (often exceeding 50%) relative to conservative tracers, whereas marine submicrometer aerosol is often enriched in bromine. Model calculations, laboratory studies, and field observations strongly suggest that the supermicrometer depletions reflect the chemical transformation of particulate bromide to reactive inorganic gases that influence the processing of ozone and other important constituents of marine air. Mechanisms for the submicrometer enrichments are not well understood. Currently available techniques cannot reliably quantify many Br containing compounds at ambient concentrations and, consequently, our understanding of inorganic Br cycling over the oceans and its global significance are uncertain. To provide a more coherent framework for future research, we have reviewed measurements in marine aerosol, the gas phase, and in rain. We also summarize sources and sinks, as well as model and laboratory studies of chemical transformations. The focus is on inorganic bromine over the open oceans outside the polar regions. The generation of sea-salt aerosol at the ocean surface is the major tropospheric source producing about 6.2 Tg/a of bromide. The transport of Br from continents (as mineral aerosol, and as products from biomass-burning and fossil-fuel combustion) can be of local importance. Transport of degradation products of long-lived Br containing compounds from the stratosphere and other sources contribute lesser amounts. Available evidence suggests that, following aerosol acidification, sea-salt bromide reacts to form Br2 and BrCl that volatilize to the gas phase and photolyze in daylight to produce atomic Br and Cl. Subsequent transformations can destroy tropospheric ozone, oxidize dimethylsulfide (DMS) and hydrocarbons in the gas phase and S(IV) in aerosol solutions, and thereby potentially influence climate. The diurnal cycle of gas-phase Br and the corresponding particulate Br deficits are correlated. Higher values of Br in the gas phase during daytime are consistent with expectations based on photochemistry. We expect that the importance of inorganic Br cycling will vary in the future as a function of both increasing acidification of the atmosphere (through anthropogenic emissions) and climate changes. The latter affects bromine cycling via meteorological factors including global wind fields (and the associated production of sea-salt aerosol), temperature, and relative humidity.
    Print ISSN: 1680-7316
    Electronic ISSN: 1680-7324
    Topics: Geosciences
    Published by Copernicus on behalf of European Geosciences Union.
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 7
    Publication Date: 2005-03-10
    Description: Particles from biomass burning and regional haze were sampled in Rondônia, Brazil, during dry, transition and wet periods from September to November 2002, as part of the LBA-SMOCC (Large-Scale Biosphere-Atmosphere Experiment in Amazonia – Smoke, Aerosols, Clouds, Rainfall, and Climate) field campaign. Water soluble organic and inorganic compounds in bulk (High Volume and Stacked Filter Unit sampler) and size-resolved (Micro Orifice Uniform Deposit Impactor – MOUDI) smoke samples were determined by ion chromatography. It was found that low molecular weight polar organic acids account for a significant fraction of the water soluble organic carbon (WSOC) in biomass burning aerosols (C2-C6 dicarboxylic acids reached up to 3.7% and one-ring aromatic acids reached up to 2% of fine fraction WSOC during burning period). Short dicarboxylic (C2-C6) acids are dominated by oxalic acid followed by malonic and succinic acids. The largest ionic species is ammonium sulfate (60–70% of ionic mass). It was found that most of the ionic mass is concentrated in submicrometer-sized particles. Based on the size distribution and correlations with K+, a known biomass burning tracer, it is suggested that many of the organic acids are directly emitted by vegetation fires. Concentrations of dicarboxylic acids in the front and back filters of high volume sampler were determined. Based on these measurements, it was concluded that in the neutral or slightly basic smoke particles typical of this region, dicarboxylic acids are mostly confined to the particulate phase. Finally, it is shown that the distribution of water soluble species shifts to larger aerosols sizes as the aerosol population ages and mixes with other aerosol types in the atmosphere.
    Print ISSN: 1680-7316
    Electronic ISSN: 1680-7324
    Topics: Geosciences
    Published by Copernicus on behalf of European Geosciences Union.
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 8
    Publication Date: 2010-10-05
    Description: In the present study, we have characterized the structure of a higher-molecular weight (MW) 358 α- and β-pinene dimeric secondary organic aerosol (SOA) product that received ample attention in previous molecular characterization studies and has been elusive. Based on mass spectrometric evidence for deprotonated molecules formed by electrospray ionization in the negative ion mode and chemical considerations, it is suggested that diaterpenylic acid is a key monomeric intermediate for dimers of the ester type. It is proposed that cis-pinic acid is esterified with the hydroxyl-containing diaterpenylic acid, which can be explained through acid-catalyzed hydrolysis of the recently elucidated lactone-containing terpenylic acid and/or diaterpenylic acid acetate, both first-generation oxidation products. To a minor extent, higher-MW 358 and 344 diester products are formed containing other terpenoic acids as monomeric units, i.e., diaterpenylic acid instead of cis-pinic acid, and diaterebic acid instead of diaterpenylic acid. It is shown that the MW 358 diester and related MW 344 compounds, which can be regarded as processed SOA products, also occur in ambient fine (PM2.5) rural aerosol collected at night during the warm period of the 2006 summer field campaign conducted at K-puszta, Hungary, a rural site with coniferous vegetation. This indicates that, under ambient conditions, the higher-MW diesters are formed in the particle phase over a longer time-scale than that required for gas-to-particle partitioning of their monomeric precursors in laboratory α-/β-pinene ozonolysis experiments.
    Print ISSN: 1680-7316
    Electronic ISSN: 1680-7324
    Topics: Geosciences
    Published by Copernicus on behalf of European Geosciences Union.
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 9
    Publication Date: 2012-01-02
    Description: Measurements of organic marker compounds and inorganic species were performed on PM2.5 aerosols from a Belgian forest site that is severely impacted by urban pollution ("De Inslag", Brasschaat, Belgium) during a 2007 summer period within the framework of the "Formation mechanisms, marker compounds, and source apportionment for biogenic atmospheric aerosols (BIOSOL)" project. The measured organic species included (i) low-molecular weight (MW) dicarboxylic acids (LMW DCAs), (ii) methanesulfonate (MSA), (iii) terpenoic acids originating from the oxidation of α-pinene, β-pinene, d-limonene and Δ3-carene, and (iv) organosulfates related to secondary organic aerosol from the oxidation of isoprene and α-pinene. The organic tracers explained, on average, 5.3 % of the organic carbon (OC), of which 0.7 % was due to MSA, 3.4 % to LMW DCAs, 0.6 % to organosulfates, and 0.6 % to terpenoic acids. The highest atmospheric concentrations of most species were observed during the first five days of the campaign, which were characterised by maximum day-time temperatures 〉22 °C. Most of the terpenoic acids and the organosulfates peaked during day-time, consistent with their local photochemical origin. High concentrations of 3-methyl-1,2,3-butanetricarboxylic acid (MBTCA) and low concentrations of cis-pinonic acid were noted during the first five days of the campaign, indicative of an aged biogenic aerosol. Several correlations between organic species were very high (r〉0.85), high (0.7
    Print ISSN: 1680-7316
    Electronic ISSN: 1680-7324
    Topics: Geosciences
    Published by Copernicus on behalf of European Geosciences Union.
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 10
    Publication Date: 2014-07-23
    Description: The monosaccharide anhydrides (MAs) levoglucosan, galactosan and mannosan are products of incomplete combustion and pyrolysis of cellulose and hemicelluloses, and are found to be major constituents of biomass burning aerosol particles. Hence, ambient aerosol particle concentrations of levoglucosan are commonly used to study the influence of residential wood burning, agricultural waste burning and wild fire emissions on ambient air quality. A European-wide intercomparison on the analysis of the three monosaccharide anhydrides was conducted based on ambient aerosol quartz fiber filter samples collected at a Norwegian urban background site during winter. Thus, the samples' content of MAs is representative for biomass burning particles originating from residential wood burning. The purpose of the intercomparison was to examine the comparability of the great diversity of analytical methods used for analysis of levoglucosan, mannosan and galactosan in ambient aerosol filter samples. Thirteen laboratories participated, of which three applied High-Performance Anion-Exchange Chromatography (HPAEC), four used High-Performance Liquid Chromatography (HPLC) or Ultra-Performance Liquid Chromatography (UPLC), and six resorted to Gas Chromatography (GC). The analytical methods used were of such diversity that they should be considered as thirteen different analytical methods. All of the thirteen laboratories reported levels of levoglucosan, whereas nine reported data for mannosan and/or galactosan. Eight of the thirteen laboratories reported levels for all three isomers. The accuracy for levoglucosan, presented as the mean percentage error (PE) for each participating laboratory, varied from −63 to 23%; however, for 62% of the laboratories the mean PE was within ±10%, and for 85% the mean PE was within ±20%. For mannosan, the corresponding range was −60 to 69%, but as for levoglucosan, the range was substantially smaller for a subselection of the laboratories; i.e., for 33% of the laboratories the mean PE was within ±10%. For galactosan, the mean PE for the participating laboratories ranged from −84 to 593%, and as for mannosan 33% of the laboratories reported a mean PE within ±10%. The variability of the various analytical methods, as defined by their minimum and maximum PE value, was typically better for levoglucosan than for mannosan and galactosan, ranging from 3.2 to 41% for levoglucosan, from 10 to 67% for mannosan, and from 6 to 364% for galactosan. For the levoglucosan to mannosan ratio, which may be used to assess the relative importance of softwood vs. hardwood burning, the variability only ranged from 3.5 to 24%. To our knowledge, this is the first major intercomparison on analytical methods used to quantify monosaccharide anhydrides in ambient aerosol filter samples conducted and reported in the scientific literature. The results show that for levoglucosan the accuracy is only slightly lower than that reported for analysis of SO42− on filter samples, a constituent that has been analyzed by numerous laboratories for several decades, typically by ion chromatography, and which is considered a fairly easy constituent to measure. Hence, the results obtained for levoglucosan with respect to accuracy are encouraging and suggest that levels of levoglucosan, and to a lesser extent mannosan and galactosan, obtained by most of the analytical methods currently used to quantify monosaccharide anhydrides in ambient aerosol filter samples, are comparable. Finally, the various analytical methods used in the current study should be tested for other aerosol matrices and concentrations as well, the most obvious being summertime aerosol samples affected by wild fires and/or agricultural fires.
    Electronic ISSN: 1867-8610
    Topics: Geosciences
    Published by Copernicus on behalf of European Geosciences Union.
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...