ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

Language
Number of Hits per Page
Default Sort Criterion
Default Sort Ordering
Size of Search History
Default Email Address
Default Export Format
Default Export Encoding
Facet list arrangement
Maximum number of values per filter
Auto Completion
Topics (search only within journals and journal articles that belong to one or more of the selected topics)
Feed Format
Maximum Number of Items per Feed
feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Electronic Resource
    Electronic Resource
    [S.l.] : American Institute of Physics (AIP)
    Review of Scientific Instruments 57 (1986), S. 1737-1739 
    ISSN: 1089-7623
    Source: AIP Digital Archive
    Topics: Physics , Electrical Engineering, Measurement and Control Technology
    Notes: The final stages in the compression of microencapsulated DT fueled ICF targets require detailed characterization for meaningful comparison with predictions of hydrodynamic codes. The determination of such parameters as the fuel and shell areal densities, the average ion temperature, and the impact of implosion nonuniformities in high-density target implosions present a strong challenge. We describe several approaches utilizing the self-generated neutrons to diagnose these conditions, including neutron spectrometry, neutron activation of tracer gas and shell materials, and neutron scattering techniques. The importance of making simultaneous measurements of several core parameters to limit ambiguity in interpretation is discussed.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Electronic Resource
    Electronic Resource
    [S.l.] : American Institute of Physics (AIP)
    Journal of Applied Physics 68 (1990), S. 5036-5043 
    ISSN: 1089-7550
    Source: AIP Digital Archive
    Topics: Physics
    Notes: We report on the importance of various sources of power imbalance of the 24 beam OMEGA laser system in contributing to laser irradiation nonuniformity. Long spatial wavelength irradiation nonuniformities on target are investigated numerically by adapting existing uniformity codes to incorporate time-dependent density and temperature profiles. The analysis shows that power imbalance due to slightly detuned (≤100 μrad) frequency conversion crystals and small differences in the ultraviolet (UV)-transport losses (ΔE/E≤5%) makes only a modest contribution to the overall nonuniformity. However, power imbalance from pulse shape distortion was found to create substantial irradiation nonuniformity on the target early in the implosion. The predictions of the present analysis were verified by an experiment in which a well controlled power imbalance was applied. Good agreement was found between the experimentally observed core positions and those predicted by the simulation.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    Electronic Resource
    Electronic Resource
    [S.l.] : American Institute of Physics (AIP)
    Physics of Plasmas 3 (1996), S. 2122-2128 
    ISSN: 1089-7674
    Source: AIP Digital Archive
    Topics: Physics
    Notes: The linear stability analysis of accelerated ablation fronts is carried out self-consistently by retaining the effect of finite thermal conductivity. Its temperature dependence along with the density gradient scale length are adjusted to fit the density profiles obtained in the one-dimensional simulations. The effects of diffusive radiation transport are included through the nonlinear thermal conductivity (κ∼Tν). The growth rate is derived by using a boundary layer analysis for Fr(very-much-greater-than)1 (Fr is the Froude number) and a WKB approximation for Fr(very-much-less-than)1. The self-consistent Atwood number depends on the mode wavelength and the power law index for thermal conduction. The analytic growth rate and cutoff wave number are in good agreement with the numerical solutions for arbitrary ν(approximately-greater-than)1. © 1996 American Institute of Physics.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
    ISSN: 1089-7674
    Source: AIP Digital Archive
    Topics: Physics
    Notes: OMEGA, a 60-beam, 351 nm, Nd:glass laser with an on-target energy capability of more than 40 kJ, is a flexible facility that can be used for both direct- and indirect-drive targets and is designed to ultimately achieve irradiation uniformity of 1% on direct-drive capsules with shaped laser pulses (dynamic range (approximately-greater-than)400:1). The OMEGA program for the next five years includes plasma physics experiments to investigate laser–matter interaction physics at temperatures, densities, and scale lengths approaching those of direct-drive capsules designed for the 1.8 MJ National Ignition Facility (NIF); experiments to characterize and mitigate the deleterious effects of hydrodynamic instabilities; and implosion experiments with capsules that are hydrodynamically equivalent to high-gain, direct-drive capsules. Details are presented of the OMEGA direct-drive experimental program and initial data from direct-drive implosion experiments that have achieved the highest thermonuclear yield (1014 DT neutrons) and yield efficiency (1% of scientific breakeven) ever attained in laser-fusion experiments. © 1996 American Institute of Physics.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 5
    Electronic Resource
    Electronic Resource
    [S.l.] : American Institute of Physics (AIP)
    Physics of Plasmas 3 (1996), S. 4665-4676 
    ISSN: 1089-7674
    Source: AIP Digital Archive
    Topics: Physics
    Notes: The linear growth rate of the Rayleigh–Taylor instability is calculated for accelerated ablation fronts with small Froude numbers (Fr(very-much-less-than)1). The derivation is carried out self-consistently by including the effects of finite thermal conductivity (κ∼Tν) and density gradient scale length (L). It is shown that long-wavelength modes with wave numbers kL0(very-much-less-than)1 [L0=νν/(ν+1)ν+1 min(L)] have a growth rate γ(approximately-equal-to)(square root of)ATkg−βkVa, where Va is the ablation velocity, g is the acceleration, AT=1+O[(kL0)1/ν], and 1〈β(ν)〈2. Short-wavelength modes are stabilized by ablative convection, finite density gradient, and thermal smoothing. The growth rate is γ=(square root of)αg/L0+c20k4L20V2a−c0k2L0Va for 1(very-much-less-than)kL0(very-much-less-than)Fr−1/3, and γ=c1g/(Vak2L20)−c2kVa for the wave numbers near the cutoff kc. The parameters α and c0−2 mainly depend on the power index ν; and the cutoff kc of the unstable spectrum occurs for kcL0∼Fr−1/3(very-much-greater-than)1. Furthermore, an asymptotic formula reproducing the growth rate at small and large Froude numbers is derived and compared with numerical results. © 1996 American Institute of Physics.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 6
    Electronic Resource
    Electronic Resource
    [S.l.] : American Institute of Physics (AIP)
    Physics of Plasmas 3 (1996), S. 1402-1414 
    ISSN: 1089-7674
    Source: AIP Digital Archive
    Topics: Physics
    Notes: The linear stability analysis of accelerated ablation fronts is carried out self-consistently by retaining the effect of finite thermal conductivity. Its temperature dependence is included through a power law (κ∼Tν) with a power index ν(approximately-greater-than)1. The growth rate is derived for Fr(very-much-greater-than)1 (Fr is the Froude number) by using a boundary layer analysis. The self-consistent Atwood number and the ablative stabilization term depend on the mode wavelength, the density gradient scale length, and the power index ν. The analytic formula for the growth rate is shown to be in excellent agreement with the numerical fit of Takabe, Mima, Montierth, and Morse [Phys. Fluids 28, 3676 (1985)] for ν=2.5 and the numerical results of Kull [Phys. Fluids B 1, 170 (1989)] over a large range of ν's. © 1996 American Institute of Physics.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 7
    Electronic Resource
    Electronic Resource
    [S.l.] : American Institute of Physics (AIP)
    Physics of Plasmas 2 (1995), S. 2465-2472 
    ISSN: 1089-7674
    Source: AIP Digital Archive
    Topics: Physics
    Notes: The nonlinear evolution of the Rayleigh–Taylor instability from multimode initial perturbations is studied by two complementary approaches. First, a statistical-mechanics bubble-merger model is presented, that enables determination of the late-time scaling properties based on single-mode and two-bubble interaction physics. The results for Rayleigh–Taylor (RT) and Richtmyer–Meshkov (RM) bubble and spike front penetrations are given, as well as scaling laws for mixing under a time-dependent driving acceleration. The second approach is a modal model, in which nonlinear mode coupling and saturation are included in an equation for effective modes that describe the mixed region. The importance of mode coupling in the generation of large structure that dominates the late stage evolution, and the relative importance of long-wavelength components in the initial perturbation spectra on the late-stage evolution are studied. Finally, multimode RT instability in three dimensions is studied by both full-scale simulations and the modal model. The effect and late-stage memory loss of different aspect ratios in the initial perturbation are demonstrated. © 1995 American Institute of Physics.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 8
    Electronic Resource
    Electronic Resource
    [S.l.] : American Institute of Physics (AIP)
    Physics of Plasmas 1 (1994), S. 2342-2349 
    ISSN: 1089-7674
    Source: AIP Digital Archive
    Topics: Physics
    Notes: Experiments were conducted to confirm that the Rayleigh–Taylor instability is the main process controlling the burnthrough time in imploding spherical experiments. In these experiments the laser irradiates targets overcoated with a parylene layer, in which one or more thin signature layers of moderate- to high-Z material are embedded to signal the penetration of the heat front. Target parameters were varied to study the effect on the burnthrough time of changes to target acceleration, Atwood number, and ablation velocity. The effects of improved laser uniformity through the introduction of smoothing by spectral dispersion are also presented. The results agree well with those obtained from a multimode mix model. This suggests that burnthrough experiments can be used to measure improvements in laser-irradiation or target-fabrication uniformity and to test methods to mitigate the growth of the Rayleigh–Taylor instability.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 9
    ISSN: 1089-7674
    Source: AIP Digital Archive
    Topics: Physics
    Notes: Several inertial confinement fusion (ICF) capsule designs have been proposed as possible candidates for achieving ignition by indirect drive on the National Ignition Facility (NIF) laser [Paisner et al., Laser Focus World 30, 75 (1994)]. This article reviews these designs, their predicted performance using one-, two-, and three-dimensional numerical simulations, and their fabricability. Recent design work at a peak x-ray drive temperature of 250 eV with either 900 or 1300 kJ total laser energy confirms earlier capsule performance estimates [Lindl, Phys. Plasmas 2, 3933 (1995)] that were based on hydrodynamic stability arguments. These simulations at 250 eV and others at the nominal 300 eV drive show that capsules having either copper doped beryllium (Be+Cu) or polyimide (C22H10N2O4) ablators have favorable implosion stability and material fabrication properties. Prototypes of capsules using these ablator materials are being constructed using several techniques: brazing together machined hemishells (Be+Cu), sputter deposition (Be+Cu), and monomer deposition followed by thermal processing (polyimide). © 1999 American Institute of Physics.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 10
    ISSN: 1089-7674
    Source: AIP Digital Archive
    Topics: Physics
    Notes: It has been recognized for many years that the most significant limitation of inertial confinement fusion (ICF) is the Rayleigh–Taylor (RT) instability. It limits the distance an ablatively driven shell can be moved to several times its initial thickness. Fortunately material flow through the unstable region at velocity vA reduces the growth rate to (square root of)kg/1+kL−βkvA with β from 2–3. In recent years experiments using both x-ray drive and smoothed laser drive to accelerate foils have confirmed the community's understanding of the ablative RT instability in planar geometry. The growth of small initial modulations on the foils is measured for growth factors up to 60 for direct drive and 80 for indirect drive. For x-ray drive large stabilization is evident. After some growth, the instability enters the nonlinear phase when mode coupling and saturation are also seen and compare well with modeling. Normalized growth rates for direct drive are measured to be higher, but strategies for reduction by raising the isentrope are being investigated. For direct drive, high spatial frequencies are imprinted from the laser beam and amplified by the RT instability. Modeling shows an understanding of this "laser imprinting.''
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...