ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

Language
Number of Hits per Page
Default Sort Criterion
Default Sort Ordering
Size of Search History
Default Email Address
Default Export Format
Default Export Encoding
Facet list arrangement
Maximum number of values per filter
Auto Completion
Topics (search only within journals and journal articles that belong to one or more of the selected topics)
Feed Format
Maximum Number of Items per Feed
feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Electronic Resource
    Electronic Resource
    [s.l.] : Nature Publishing Group
    Nature 431 (2004), S. 252-253 
    ISSN: 1476-4687
    Source: Nature Archives 1869 - 2009
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Notes: [Auszug] A shocking thing has happened in the world of the cytoskeleton, the complex of proteins responsible for cell shape and movement. One of the most important structures it forms is the spindle, which ensures the faithful delivery of replicated chromosomes to daughter cells following cell division. ...
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Electronic Resource
    Electronic Resource
    Oxford, UK : Blackwell Publishing Ltd
    The @journal of eukaryotic microbiology 41 (1994), S. 0 
    ISSN: 1550-7408
    Source: Blackwell Publishing Journal Backfiles 1879-2005
    Topics: Biology
    Notes: The roles of the myosin I class of mechanoenzymes have been investigated by single and double gene knockout studies in the amoeba Dictyostelium discoideum. Cells lacking different myosin I pairs (myoA-/myoB-, myoB-/myoC-, and myoA-/myoC-) were examined with respect to their cytoskeletal organization. F-actin localization by rhodamine-phalloidin staining of cells indicates that the myoA-/myoB-, myoB-/myoC-, and myoA-/myoC- cells appear to redistribute their F-actin more slowly than wild type cells upon adhesion to a substrate. These studies suggest that Dictyostelium myoA, myoB, and myoC may have overlapping roles in maintaining the integrity or organization of the cortical membrane cytoskeleton.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    Electronic Resource
    Electronic Resource
    Oxford, UK : Blackwell Publishing Ltd
    The @journal of eukaryotic microbiology 47 (2000), S. 0 
    ISSN: 1550-7408
    Source: Blackwell Publishing Journal Backfiles 1879-2005
    Topics: Biology
    Notes: Dictyostelium discoideum is a simple eukaryote amenable to detailed molecular studies of the endocytic processes phagocytosis and macropinocytosis. Both the actin cytoskeleton and associated myosin motors are well-described and a range of mutants arc now available that enable characterization of the role of the cytoskeleton in a range of cellular functions. Molecular genetic studies have uncovered roles for two different classes of Dictyostelium unconventional myosins in endocytosis. The class I myosins contribute to both macropinocytosis and phagocytosis by playing a general role in controlling actin-dependent manipulations of the actin-rich cortex. A class VII myosin has been shown to be important for phagocytosis. This brief review summarizes what is known about the role of these different myosins in both fluid and particle uptake in this system.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
    Electronic Resource
    Electronic Resource
    [s.l.] : Nature Publishing Group
    Nature 436 (2005), S. 1097-1099 
    ISSN: 1476-4687
    Source: Nature Archives 1869 - 2009
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Notes: [Auszug] Motor proteins use chemical energy, for example from ATP, to generate unidirectional movement along a filamentous track. How a group of proteins acquired and then varied this property to generate a range of movements as evolution proceeded is a fascinating problem in biology. Answers are within ...
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 5
    Electronic Resource
    Electronic Resource
    Springer
    Journal of muscle research and cell motility 10 (1989), S. 25-33 
    ISSN: 1573-2657
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology , Medicine
    Notes: Summary The reactive thiol of the myosin head, SH-1, can be selectively labelled in glycerinated rabbit muscle fibres. This residue has been used as an attachment site for either fluorescent or spectroscopic probes which report on head movements and orientations in various functional states of muscle. We have specifically modified SH-1in vitro, using purified rabbit myosin and conditions similar to those employed in the labelling of muscle fibres (low ionic strength [40mM NaCl] at 4°C), with stoichiometric amounts of either [14C]-iodoacetamide, 5-(2((iodoacetyl)amino)ethyl) aminonaphthalene-1-sulphonic acid (IAEDANS), or 4-(2-iodoacetamido-2,2,6,6-tetramethyl piperidinooxyl (IASL). The specificity of modification was determined by measuring the well-defined alterations in the high salt ATPase activities of myosin and by localizing both IAAm and IAEDANS to the 20-kDa C-terminal subfragment 1 (S1) which contains SH-1. The low ionic strength actin-activated Mg2+-ATPase of SH-1-modified rabbit myosin was measured in the presence of the thin filament regulatory, complex, troponin-tropomyosin. A significant increase in this activity in the absence of calcium, concomitant with a decrease in activity in the presence of calcium, was observed as the extent of SH-1 modification was incrementally increased from zero to one mole of label bound per mole of SH-1. The elevated myosin Mg2+-ATPase, which results from SH-1 modification, does not account for the increased actin-activated Mg2+-ATPase in resting conditions (i.e. in the absence of calcium). Thein vitro actin-activated Mg2+-ATPase activities become equal in both active and resting conditions when one mole of SH-1 is modified per mole of myosin head. These results demonstrate that SH-1 is located in a region of the myosin head which plays a part in the calcium-sensitive regulation of the actin-activated Mg2+-ATPase by troponin-tropomyosin. These studies also indicate that SH-1-labelled preparations may not be suitable for the analysis of myosin head motion and/or orientation in the resting state.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 6
    Electronic Resource
    Electronic Resource
    Springer
    Journal of muscle research and cell motility 17 (1996), S. 411-424 
    ISSN: 1573-2657
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology , Medicine
    Notes: Summary The simple eukaryote Dictyostelium discoideum contains at least 12 unconventional myosin genes. Here we report the characterization of one of these, myoJ, a gene initially identified through a physical mapping screen. The myoJ gene encodes a high molecular weight myosin, and analysis of the available deduced amino acid sequence reveals that it possesses six IQ motifs and sequences typical of alpha helical coiled coils in the tail region. Therefore, myoJ is predicted to exist as a dimer with up to 12 associated light chains (six per heavy chain). The 7.8 kb myoJ mRNA is expressed all throughout the life cycle of D. discoideum. The myoJ gene has been disrupted and a phenotypic analysis of the mutant cells initiated. Finally, phylogenetic analysis of the head region reveals that myoJ is most similar to two plant myosin genes, Arabidopsis MYA1 and MYA2, that have been alternatively suggested to be either members of the myosin V class or founding members of the myosin XI class.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 7
    Electronic Resource
    Electronic Resource
    New York, NY : Wiley-Blackwell
    Cell Motility and the Cytoskeleton 2 (1982), S. 131-147 
    ISSN: 0886-1544
    Keywords: higher land plant contractile system ; actin activation of myosin ; S-1 decoration of actin ; polymerization of actin ; calcium sensitivity of actomyosin interaction ; Life and Medical Sciences ; Cell & Developmental Biology
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Biology , Medicine
    Notes: This paper describes the initial isolation of actin- and myosin-like proteins from the cytoplasm of the endocarp tissue cells of the fruit of the tomato, Lycopersicon esculentum. Low ionic strength buffers extracted the 42,000 molecular weight tomato actin in the depolymerized form. Tomato actin can be polymerized in 0.1 M KCl, 2 mM MgCl2 to form 6 nm diameter filaments resembling rabbit skeletal muscle F-actin in their ultrastructure and pattern of decoration with rabbit myosin subfragment-1 (S-1). Tomato F-actin activates the low ionic strength Mg2+ ATPase of rabbit S-1 up to ten-fold. High ionic strength extracts of tomato yield a myosinlike enzyme whose ATPase activity in 0.5 M KCl is maximal in the presence of K+-EDTA and is repressed in the presence of Mg2+. The column-purified enzyme forms a complex with rabbit F-actin, which can be dissociated by Mg2+ ATP. The low ionic strength Mg2+ ATPase of tomato myosin can be activated ten-fold by rabbit actin and up to nineteen-fold by tomato actin. No activation of the tomato myosin by rabbit F-actin occurs in the absence of free calcium ions.
    Additional Material: 9 Ill.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 8
    Publication Date: 2019-10-14
    Description: Filopodia are actin-filled protrusions employed by cells to interact with their environment. Filopodia formation in Amoebozoa and Metazoa requires the phylogenetically diverse MyTH4-FERM (MF) myosins DdMyo7 and Myo10, respectively. While Myo10 is known to form antiparallel dimers, DdMyo7 lacks a coiled-coil domain in its proximal tail region, raising the question of how such divergent motors perform the same function. Here, it is shown that the DdMyo7 lever arm plays a role in both autoinhibition and function while the proximal tail region can mediate weak dimerization, and is proposed to be working in cooperation with the C-terminal MF domain to promote partner-mediated dimerization. Additionally, a forced dimer of the DdMyo7 motor is found to weakly rescue filopodia formation, further highlighting the importance of the C-terminal MF domain. Thus, weak dimerization activity of the DdMyo7 proximal tail allows for sensitive regulation of myosin activity to prevent inappropriate activation of filopodia formation. The results reveal that the principles of MF myosin-based filopodia formation are conserved via divergent mechanisms for dimerization.
    Print ISSN: 0027-8424
    Electronic ISSN: 1091-6490
    Topics: Biology , Medicine , Natural Sciences in General
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 9
    Publication Date: 2016-11-23
    Description: The formation of filopodia in Metazoa and Amoebozoa requires the activity of myosin 10 (Myo10) in mammalian cells and of Dictyostelium unconventional myosin 7 (DdMyo7) in the social amoeba Dictyostelium. However, the exact roles of these MyTH4-FERM myosins (myosin tail homology 4-band 4.1, ezrin, radixin, moesin; MF) in the initiation and elongation of filopodia are not well defined and may reflect conserved functions among phylogenetically diverse MF myosins. Phylogenetic analysis of MF myosin domains suggests that a single ancestral MF myosin existed with a structure similar to DdMyo7, which has two MF domains, and that subsequent duplications in the metazoan lineage produced its functional homolog Myo10. The essential functional features of the DdMyo7 myosin were identified using quantitative live-cell imaging to characterize the ability of various mutants to rescue filopod formation in myo7-null cells. The two MF domains were found to function redundantly in filopod formation with the C-terminal FERM domain regulating both the number of filopodia and their elongation velocity. DdMyo7 mutants consisting solely of the motor plus a single MyTH4 domain were found to be capable of rescuing the formation of filopodia, establishing the minimal elements necessary for the function of this myosin. Interestingly, a chimeric myosin with the Myo10 MF domain fused to the DdMyo7 motor also was capable of rescuing filopod formation in the myo7-null mutant, supporting fundamental functional conservation between these two distant myosins. Together, these findings reveal that MF myosins have an ancient and conserved role in filopod formation.
    Print ISSN: 0027-8424
    Electronic ISSN: 1091-6490
    Topics: Biology , Medicine , Natural Sciences in General
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 10
    Publication Date: 2011-01-18
    Print ISSN: 0027-8424
    Electronic ISSN: 1091-6490
    Topics: Biology , Medicine , Natural Sciences in General
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...