ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

Language
Number of Hits per Page
Default Sort Criterion
Default Sort Ordering
Size of Search History
Default Email Address
Default Export Format
Default Export Encoding
Facet list arrangement
Maximum number of values per filter
Auto Completion
Topics (search only within journals and journal articles that belong to one or more of the selected topics)
Feed Format
Maximum Number of Items per Feed
feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Electronic Resource
    Electronic Resource
    Springer
    Boundary layer meteorology 76 (1995), S. 291-301 
    ISSN: 1573-1472
    Keywords: Heat flux ; Forest meteorology ; Microscale ; Surface radiation temperature
    Source: Springer Online Journal Archives 1860-2000
    Topics: Geosciences , Physics
    Notes: Abstract The surface heat flux is normally parameterized in terms of the difference between the air temperature and the surface radiative temperature, or equivalently, the temperature computed from the surface energy balance. In this note, the relationship between the heat flux and the air-surface temperature difference is shown to be sensitive to the microscale variability of the surface radiation temperature caused by differences between the well-ventilated tree tops and less ventilated ground surface. This conclusion is based on surface and aircraft data collected during the Boreal Ecosystem-Atmosphere Study (BOREAS). For this case, the heat flux cannot be predicted by adjusting the thermal roughness height. As an alternative, the aerodynamic temperature can be related to a weighted average of the surface radtation temperature analogous to application of a simple canopy model. Here, the total heat flux is the sum of the heat fluxes from each individual surface type weighted by the area-fractional coverage.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Electronic Resource
    Electronic Resource
    Springer
    Boundary layer meteorology 92 (1999), S. 407-427 
    ISSN: 1573-1472
    Keywords: Roughness length ; Aerodynamic temperature ; Surface layer ; Monin–Obukhov similarity theory
    Source: Springer Online Journal Archives 1860-2000
    Topics: Geosciences , Physics
    Notes: Abstract The thermal roughness height associated with the surface radiation temperature has been previously found to vary between different surface types. This study finds that the thermal roughness height varies diurnally even over a homogeneous senescent grassland. The corresponding roughness length for momentum is relatively constant. Both the aerodynamic temperature and the surface radiation temperature are found to be closely related to the air temperature in the middle of the grass canopy. However, the aerodynamic temperature is strongly influenced by the horizontally integrated heat transfer, while the surface radiation temperature represents the integrated thermal emission through the grass depth within the field of view of the radiometer. The aerodynamic temperature is less sensitive to variations and measurement errors in sensible heat flux, wind speed, and air temperature than the thermal roughness height. We find that formulating the aerodynamic temperature in terms of the surface radiation temperature is better posed for use in the bulk formula than using the surface radiation temperature directly and adjusting the thermal roughness length.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    Electronic Resource
    Electronic Resource
    Springer
    Boundary layer meteorology 91 (1999), S. 109-125 
    ISSN: 1573-1472
    Keywords: Aerodynamic temperature ; Bulk formula ; Monin–Obukhov similarity theory ; Roughness sublayer
    Source: Springer Online Journal Archives 1860-2000
    Topics: Geosciences , Physics
    Notes: Abstract Aerodynamic variables are required to apply Monin–Obukhov similarity theory in the bulk formulation of surface fluxes. In the literature, these aerodynamic variables are commonly misinterpreted. In this paper, we review the concept of the aerodynamic variable, its connection to surface-layer similarity theory and how and why the aerodynamic variable is replaced with other variables. Observed mean variables below the surface layer, such as the surface radiation temperature, or the air temperature at canopy height, are often used in place of the extrapolated aerodynamic variables in the bulk formula, requiring empirical relationships between aerodynamic and observed variables, or requiring empirical adjustments of bulk resistances. The present study examines the validity of these relationshi Experiment (CODE). The results indicate that using a measured substitute for an aerodynamic variable can lead to significant errors in estimates of turbulent surface fluxes.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
    Electronic Resource
    Electronic Resource
    Springer
    Boundary layer meteorology 86 (1998), S. 421-446 
    ISSN: 1573-1472
    Keywords: Surface heat flux ; Sea surface fluxes ; Marine boundary layer ; Monin–Obukhov similarity
    Source: Springer Online Journal Archives 1860-2000
    Topics: Geosciences , Physics
    Notes: Abstract Various difficulties with application of Monin–Obukhov similarity theory are surveyed including the influence of growing waves, advection and internal boundary-layer development. These complications are normally important with offshore flow. The transfer coefficient for heat is computed from eddy correlation data taken at a mast two kilometres off the Danish coast in RASEX. For these coastal zone data, the thermal roughness length shows no well-defined relation to the momentum roughness length or roughness Reynolds number, in contrast to previous theories. The variation of the momentum roughness length is dominated by wave state. In contrast, the thermal roughness length shows significant dependence on wave state only for small values of wave age where the mixing is apparently enhanced by wave breaking. The development of thin internal boundary layers with offshore flow substantially reduces the heat transfer and thermal roughness length but has no obvious influence on momentum roughness length. A new formulation of the thermal roughness length based on the internal boundary-layer depth is calibrated to the RASEX data. For the very stable case, the turbulence is mainly detached from the surface and existing formulations do not apply. As an alternative to adjusting the thermal roughness length, the transfer coefficient is related directly to the stability and the internal boundary-layer depth. This avoids specification of roughness lengths resulting from the usual integration of the non-dimensional temperature function. The resulting stability function is simpler than previous ones and satisfies free convection similarity theory without introduction of the gustiness factor. The internal boundary layer also influences the moisture transfer coefficient.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 5
    Publication Date: 2019-01-01
    Description: Over the last 100 years, boundary layer meteorology grew from the subject of mostly near-surface observations to a field encompassing diverse atmospheric boundary layers (ABLs) around the world. From the start, researchers drew from an ever-expanding set of disciplines—thermodynamics, soil and plant studies, fluid dynamics and turbulence, cloud microphysics, and aerosol studies. Research expanded upward to include the entire ABL in response to the need to know how particles and trace gases dispersed, and later how to represent the ABL in numerical models of weather and climate (starting in the 1970s–80s); taking advantage of the opportunities afforded by the development of large-eddy simulations (1970s), direct numerical simulations (1990s), and a host of instruments to sample the boundary layer in situ and remotely from the surface, the air, and space. Near-surface flux-profile relationships were developed rapidly between the 1940s and 1970s, when rapid progress shifted to the fair-weather convective boundary layer (CBL), though tropical CBL studies date back to the 1940s. In the 1980s, ABL research began to include the interaction of the ABL with the surface and clouds, the first ABL parameterization schemes emerged; and land surface and ocean surface model development blossomed. Research in subsequent decades has focused on more complex ABLs, often identified by shortcomings or uncertainties in weather and climate models, including the stable boundary layer, the Arctic boundary layer, cloudy boundary layers, and ABLs over heterogeneous surfaces (including cities). The paper closes with a brief summary, some lessons learned, and a look to the future.
    Print ISSN: 0065-9401
    Electronic ISSN: 1943-3646
    Topics: Geography , Geosciences , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 6
    Publication Date: 2007-06-15
    Print ISSN: 0006-8314
    Electronic ISSN: 1573-1472
    Topics: Geosciences , Physics
    Published by Springer
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 7
    Publication Date: 2015-12-21
    Description: Summertime eddy correlation measurements from an offshore tower are analyzed to investigate the dependence of the friction velocity for stable conditions on the mean wind speed V, air–sea difference of virtual potential temperature δθυ, and nonstationary submeso motions. The quantity δθυ sometimes exceeds 3°C, usually because of the advection of warm air from land over cooler water at this site. Thin stable boundary layers result. Unexpectedly, does not depend systematically on the stratification δθυ even for weak winds. For weak winds, increases systematically with increasing submeso variations of the wind. The relationship for a given V is greater in nonstationary conditions. Additionally, this study examines as a function of wind direction. The relationship appears to be affected by swell direction for weak winds and advection from land for short fetches.
    Print ISSN: 0022-3670
    Electronic ISSN: 1520-0485
    Topics: Geosciences , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 8
    Publication Date: 2016-09-21
    Description: Air–sea interactions are investigated using the data from the Coupled Boundary Layers Air–Sea Transfer experiment under low wind (CBLAST-Low) and the Surface Wave Dynamics Experiment (SWADE) over sea and compared with measurements from the 1999 Cooperative Atmosphere–Surface Exchange Study (CASES-99) over land. Based on the concept of the hockey-stick transition (HOST) hypothesis, which emphasizes contributions of large coherent eddies in atmospheric turbulent mixing that are not fully captured by Monin–Obukhov similarity theory, relationships between the atmospheric momentum transfer and the sea surface roughness, and the role of the sea surface temperature (SST) and oceanic waves in the turbulent transfer of atmospheric momentum, heat, and moisture, and variations of drag coefficient Cd(z) over sea and land with wind speed V are studied. In general, the atmospheric turbulence transfers over sea and land are similar except under weak winds and near the sea surface when wave-induced winds and oceanic currents are relevant to wind shear in generating atmospheric turbulence. The transition of the atmospheric momentum transfer between the stable and the near-neutral regimes is different over land and sea owing to the different strength and formation of atmospheric stable stratification. The relationship between the air–sea temperature difference and the turbulent heat transfer over sea is dominated by large air temperature variations compared to the slowly varying SST. Physically, Cd(z) consists of the surface skin drag and the turbulence drag between z and the surface; the increase of the latter with decreasing V leads to the minimum Cd(z), which is observed, but not limited to, over sea.
    Print ISSN: 0022-4928
    Electronic ISSN: 1520-0469
    Topics: Geography , Geosciences , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 9
    Publication Date: 2019-02-01
    Description: Conservation of total, kinetic, and thermal energy in the atmosphere is revisited, and the derived thermal energy balance is examined with observations. Total energy conservation (TEC) provides a constraint for the sum of kinetic, thermal, and potential energy changes. In response to air thermal expansion/compression, air density variation leads to vertical density fluxes and potential energy changes, which in turn impact the thermal energy balance as well as the kinetic energy balance due to the constraint of TEC. As vertical density fluxes can propagate through a large vertical domain to where local thermal expansion/compression becomes negligibly small, interactions between kinetic and thermal energy changes in determining atmospheric motions and thermodynamic structures can occur when local diabatic heating/cooling becomes small. The contribution of vertical density fluxes to the kinetic energy balance is sometimes considered but that to the thermal energy balance is traditionally missed. Misinterpretation between air thermal expansion/compression and incompressibility for air volume changes with pressure under a constant temperature would lead to overlooking important impacts of thermal expansion/compression on air motions and atmospheric thermodynamics. Atmospheric boundary layer observations qualitatively confirm the contribution of potential energy changes associated with vertical density fluxes in the thermal energy balance for explaining temporal variations of air temperature.
    Print ISSN: 1558-8424
    Electronic ISSN: 1558-8432
    Topics: Geography , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 10
    Publication Date: 2014-12-31
    Print ISSN: 0006-8314
    Electronic ISSN: 1573-1472
    Topics: Geosciences , Physics
    Published by Springer
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...