ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

Language
Number of Hits per Page
Default Sort Criterion
Default Sort Ordering
Size of Search History
Default Email Address
Default Export Format
Default Export Encoding
Facet list arrangement
Maximum number of values per filter
Auto Completion
Topics (search only within journals and journal articles that belong to one or more of the selected topics)
Feed Format
Maximum Number of Items per Feed
feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Publication Date: 2020-02-12
    Description: The application of thermo-sensitive tracers is a promising technique for evaluating the thermal state of geothermal reservoirs. To extend the compound spectrum for hydrolyzable compounds to reservoir temperatures between 100 and 200 °C carboxamides were studied. The kinetic parameters of 17 self-synthesized amides were determined in hydrothermal batch and autoclave experiments. The influence of the molecular structure and the role of pH/pOH on hydrolysis kinetics were studied. Additionally, the thermal stabilities of the hydrolysis products were evaluated. The results demonstrate the high potential of tracers based on amide hydrolysis for use in medium enthalpy reservoirs.
    Language: English
    Type: info:eu-repo/semantics/article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Electronic Resource
    Electronic Resource
    Amsterdam : Elsevier
    Biochemical and Biophysical Research Communications 178 (1991), S. 1386-1392 
    ISSN: 0006-291X
    Source: Elsevier Journal Backfiles on ScienceDirect 1907 - 2002
    Topics: Biology , Chemistry and Pharmacology , Physics
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    Electronic Resource
    Electronic Resource
    [S.l.] : American Institute of Physics (AIP)
    Physics of Plasmas 7 (2000), S. 1075-1078 
    ISSN: 1089-7674
    Source: AIP Digital Archive
    Topics: Physics
    Notes: Measurements of the electric fields, E in the DIII-D tokamak divertor region [J. C. Luxon and L. G. Davis, Fusion Technology 8, Part 2A, 441 (1985)] are quantitatively consistent with recent computational modeling establishing that E×BT circulation is the main cause of changes in divertor plasmas with the direction of the toroidal magnetic field, BT. Extensive two-dimensional measurements of plasma potential in the DIII-D tokamak divertor region are reported for the first time. The resulting E×BT/B2 drift particle flux is calculated for standard (ion ∇BT drift toward divertor X-point) and reversed BT direction and for low (L) and high (H) confinement modes. Perpendicular field strengths of up to E∼5 kV/m are observed at the separatrix between the divertor private region and the scrape-off layer (SOL). The E×BT drift, which reverses with reversal of BT, creates a poloidal circulation pattern in the divertor that convects 25%–40% of the total ion flow to the divertor target. The circulation strongly couples the various regions of the divertor and SOL and fuels the X-point region. An outward shift of the profiles is seen in reversed BT. © 2000 American Institute of Physics.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
    ISSN: 1089-7674
    Source: AIP Digital Archive
    Topics: Physics
    Notes: Intermittent plasma objects (IPOs) featuring higher pressure than the surrounding plasma, and responsible for ∼50% of the E×BT radial transport, are observed in the scrape off layer (SOL) and edge of the DIII-D tokamak [J. Watkins et al., Rev. Sci. Instrum. 63, 4728 (1992)]. Conditional averaging reveals that the IPOs, produced at a rate of ∼3×103 s−1, are positively charged and also polarized, featuring poloidal electric fields of up to 4000 V/m. The IPOs move poloidally at speeds of up to 5000 m/s and radially with E×BT/B2 velocities of ∼2600 m/s near the last closed flux surface (LCFS), and ∼330 m/s near the wall. The IPOs slow down as they shrink in radial size from 4 cm at the LCFS to 0.5 cm near the wall. The IPOs appear in the SOL of both L and H mode discharges and are responsible for nearly 50% of the SOL radial E×B transport at all radii; however, they are highly reduced in absolute amplitude in H-mode conditions. © 2001 American Institute of Physics.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 5
    ISSN: 1089-7674
    Source: AIP Digital Archive
    Topics: Physics
    Notes: The radiation of divertor heat flux on DIII-D [J. Luxon et al., in Proceedings of the 11th International Conference on Plasma Physics and Controlled Nuclear Fusion (International Atomic Energy Agency, Vienna, 1987), p. 159] is shown to greatly exceed the limits imposed by assumptions of energy transport dominated by electron thermal conduction parallel to the magnetic field. Approximately 90% of the power flowing into the divertor is dissipated through low-Z radiation and plasma recombination. The dissipation is made possible by an extended region of low electron temperature in the divertor. A one-dimensional analysis of the parallel heat flux finds that the electron temperature profile is incompatible with conduction-dominated parallel transport. Plasma flow at up to the ion acoustic speed, produced by upstream ionization, can account for the parallel heat flux. Modeling with the two-dimensional fluid code UEDGE [T. Rognlien, J. L. Milovich, M. E. Rensink, and G. D. Porter, J. Nucl. Mater. 196–198, 347 (1992)] has reproduced many of the observed experimental features. © 1998 American Institute of Physics.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 6
    ISSN: 1089-7674
    Source: AIP Digital Archive
    Topics: Physics
    Notes: Data on the discharge behavior, thermal loads, halo currents, and runaway electrons have been obtained in disruptions on the DIII-D tokamak [J. L. Luxon and L. G. Davis, Fusion Technol. 8, 2A 441 (1985)]. These experiments have also evaluated techniques to mitigate the disruptions while minimizing runaway electron production. Experiments injecting cryogenic impurity "killer" pellets of neon and argon and massive amounts of helium gas have successfully reduced these disruption effects. The halo current generation, scaling, and mitigation are understood and are in good agreement with predictions of a semianalytic model. Results from "killer" pellet injection have been used to benchmark theoretical models of the pellet ablation and energy loss. Runaway electrons are often generated by the pellets and new runaway generation mechanisms, modifications of the standard Dreicer process, have been found to explain the runaways. Experiments with the massive helium gas puff have also effectively mitigated disruptions without the formation of runaway electrons that can occur with "killer" pellets. © 1999 American Institute of Physics.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 7
    Electronic Resource
    Electronic Resource
    [S.l.] : American Institute of Physics (AIP)
    Physics of Plasmas 3 (1996), S. 3644-3652 
    ISSN: 1089-7674
    Source: AIP Digital Archive
    Topics: Physics
    Notes: Electron transport along open field lines in the diverted scrape-off layer of a tokamak is studied numerically via a kinetic Fokker–Planck approach. The method allows calculation of the distribution function in a situation where large parallel temperature gradients are maintained by collisional relaxation and, at the same time, superthermal electrons stream freely from the midplane of the plasma to the target/sheath boundary. The method also allows calculation of the self-consistent electrostatic field associated with parallel gradients in the distribution function, as well as the potential drop across the target/sheath boundary, where the latter is calculated to enforce appropriate boundary conditions at the target, although the sheath itself is not resolved. The kinetic results are compared to classical fluid results for the case of a simple (nonradiative) divertor. The kinetic solutions exhibit an enhanced superthermal electron population in the vicinity of the target, which results in a larger sheath energy transmission factor, a lower bulk electron temperature, and a smaller sheath potential drop. The sheath potential largely determines the energy with which ions impact the target, thereby affecting the rate of target erosion. Ionization rates and radiation rates from impurities in the vicinity of the target also depend strongly on the local electron temperature and can be sensitive to superthermal tails. © 1996 American Institute of Physics.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 8
    ISSN: 1089-7674
    Source: AIP Digital Archive
    Topics: Physics
    Notes: A noninductive current drive concept, based on internal pressure-driven currents in a low-aspect-ratio toroidal geometry, has been demonstrated on the Current Drive Experiment Upgrade (CDX-U) [Forest et al., Phys. Rev. Lett. 68, 3559 (1992)] and further tested on DIII-D [in Plasma Physics and Controlled Nuclear Fusion Research, 1986, Proceedings of the 11th International Conference, Kyoto (International Atomic Energy Agency, Vienna, 1987), Vol. 1, p. 159]. For both experiments, electron cyclotron power provided the necessary heating to breakdown and maintain a plasma with high-βp and low collisionality (εβp∼1, ν*≤1). A poloidal vacuum field similar to a simple magnetic mirror is superimposed on a much stronger toroidal field to provide the initial confinement for a hot, trapped electron species. With application of electron cyclotron heating (ECH), toroidal currents spontaneously flow within the plasma and increase with applied ECH power. The direction of the generated current is independent of the toroidal field direction and depends only on the direction of the poloidal field, scaling inversely with magnitude of the later. On both CDX-U and DIII-D, these currents were large enough that stationary closed flux surfaces were observed to form with no additional Ohmic heating. The existence of such equilibria provides further evidence for the existence of some type of bootstrap current. Equilibrium reconstructions show the resulting plasma exhibits properties similar to more conventional tokamaks, including a peaked current density profile which implies some form of current on axis or nonclassical current transport.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 9
    ISSN: 1089-7674
    Source: AIP Digital Archive
    Topics: Physics
    Notes: Detailed measurements in two dimensions by probes and Thomson scattering reveal unexpected local electric potential and electron pressure (pe) maxima near the divertor X point in L-mode plasmas in the DIII-D tokamak [J. L. Luxon and L. G. Davis, Fusion Technol. 8, 441 (1985)]. The potential drives E×B circulation about the X point, thereby exchanging plasma between closed and open magnetic surfaces at rates that can be comparable to the total cross-separatrix transport. The potential is consistent with the classical parallel Ohm's law. A simple model is proposed to explain the pressure and potential hills in low power, nearly detached plasmas. Recent two-dimensional edge transport modeling with plasma drifts also shows X-point pressure and potential hills but by a different mechanism. These experimental and theoretical results demonstrate that low power tokamak plasmas can be far from poloidal uniformity in a boundary layer just inside the separatrix. Additional data, although preliminary and incomplete, suggest that E×B circulation across the separatrix might be a common feature of low confinement behavior. © 2001 American Institute of Physics.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 10
    Electronic Resource
    Electronic Resource
    [S.l.] : American Institute of Physics (AIP)
    Physics of Plasmas 8 (2001), S. 4463-4469 
    ISSN: 1089-7674
    Source: AIP Digital Archive
    Topics: Physics
    Notes: The field-reversed configuration (FRC) is a high-beta compact toroidal plasma confinement scheme in which the external poloidal field is reversed on the geometric axis by azimuthal (toroidal) plasma current. A quasineutral, hybrid, particle-in-cell (PIC) approach [Y. A. Omelchenko and R. N. Sudan, Phys. Plasmas 2, 2773 (1995)] is applied to study long-term nonlinear stability of computational FRC equilibria to a number of toroidal modes, including the most disruptive tilt mode. In particular, a self-generated toroidal magnetic field is found to be an important factor in mitigating the instability and preventing the confinement disruption. This is shown to be a unique FRC property resulting from the Hall effect in the regions of vanishing poloidal magnetic field. The instability-driven toroidal field stabilizes kink formation by increasing the magnetic field energy without destabilizing curvature-driven plasma motion. Finally, the tilt instability saturates due to nonlinear, finite Larmor radius (FLR) effects and plasma relaxation to a quasisteady kinetic state. During this transition the FRC is shown to dissipate a substantial amount of initially trapped flux and plasma energy. These effects are demonstrated for kinetic and fluid-like, spherical and prolate FRCs. © 2001 American Institute of Physics.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...