ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

Language
Number of Hits per Page
Default Sort Criterion
Default Sort Ordering
Size of Search History
Default Email Address
Default Export Format
Default Export Encoding
Facet list arrangement
Maximum number of values per filter
Auto Completion
Topics (search only within journals and journal articles that belong to one or more of the selected topics)
Feed Format
Maximum Number of Items per Feed
feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Publication Date: 2015-05-01
    Description: Author(s): P.-T. Brun, Basile Audoly, Neil M. Ribe, T. S. Eaves, and John R. Lister A new model can predict the patterns formed by a viscous jet falling onto a moving surface. [Phys. Rev. Lett. 114, 174501] Published Thu Apr 30, 2015
    Keywords: Nonlinear Dynamics, Fluid Dynamics, Classical Optics, etc.
    Print ISSN: 0031-9007
    Electronic ISSN: 1079-7114
    Topics: Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2016-08-12
    Description: In 1912, palaeontologist Arthur Smith Woodward and amateur antiquarian and solicitor Charles Dawson announced the discovery of a fossil that supposedly provided a link between apes and humans: Eoanthropus dawsoni (Dawson's dawn man). The publication generated huge interest from scientists and the general public. However, ‘Piltdown man's’ initial celebrity has long been overshadowed by its subsequent infamy as one of the most famous scientific frauds in history. Our re-evaluation of the Piltdown fossils using the latest scientific methods (DNA analyses, high-precision measurements, spectroscopy and virtual anthropology) shows that it is highly likely that a single orang-utan specimen and at least two human specimens were used to create the fake fossils. The modus operandi was found consistent throughout the assemblage (specimens are stained brown, loaded with gravel fragments and restored using filling materials), linking all specimens from the Piltdown I and Piltdown II sites to a single forger—Charles Dawson. Whether Dawson acted alone is uncertain, but his hunger for acclaim may have driven him to risk his reputation and misdirect the course of anthropology for decades. The Piltdown hoax stands as a cautionary tale to scientists not to be led by preconceived ideas, but to use scientific integrity and rigour in the face of novel discoveries.
    Keywords: palaeontology, evolution
    Electronic ISSN: 2054-5703
    Topics: Natural Sciences in General
    Published by Royal Society
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2015-07-17
    Description: Author(s): Karolis Misiunas, Stefano Pagliara, Eric Lauga, John R. Lister, and Ulrich F. Keyser Particle-particle interactions are of paramount importance in every multibody system as they determine the collective behavior and coupling strength. Many well-known interactions such as electrostatic, van der Waals, or screened Coulomb interactions, decay exponentially or with negative powers of th… [Phys. Rev. Lett. 115, 038301] Published Wed Jul 15, 2015
    Keywords: Polymer, Soft Matter, Biological, and Interdisciplinary Physics
    Print ISSN: 0031-9007
    Electronic ISSN: 1079-7114
    Topics: Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
    Publication Date: 2012-07-06
    Description: Author(s): J. R. Castrejón-Pita, A. A. Castrejón-Pita, E. J. Hinch, J. R. Lister, and I. M. Hutchings The final stages of pinchoff and breakup of dripping droplets of near-inviscid Newtonian fluids are studied experimentally for pure water and ethanol. High-speed imaging and image analysis are used to determine the angle and the minimum neck size of the cone-shaped extrema of the ligaments attached ... [Phys. Rev. E 86, 015301] Published Thu Jul 05, 2012
    Keywords: Fluid dynamics
    Print ISSN: 1539-3755
    Electronic ISSN: 1550-2376
    Topics: Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 5
    Publication Date: 2012-05-31
    Description: Author(s): Duncan R. Hewitt, Jerome A. Neufeld, and John R. Lister Well-resolved direct numerical simulations of 2D Rayleigh-Bénard convection in a porous medium are presented for Rayleigh numbers Ra≤4×10 4 which reveal that, contrary to previous indications, the linear classical scaling for the Nusselt number, Nu∼Ra , is attained asymptotically. The flow dynamics ar... [Phys. Rev. Lett. 108, 224503] Published Wed May 30, 2012
    Keywords: Nonlinear Dynamics, Fluid Dynamics, Classical Optics, etc.
    Print ISSN: 0031-9007
    Electronic ISSN: 1079-7114
    Topics: Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 6
    Publication Date: 2013-10-08
    Description: Author(s): John R. Lister, Gunnar G. Peng, and Jerome A. Neufeld Propagation of a viscous fluid beneath an elastic sheet is controlled by local dynamics at the peeling front, in close analogy with the capillary-driven spreading of drops over a precursor film. Here we identify propagation laws for a generic elastic peeling problem in the distinct limits of peeling... [Phys. Rev. Lett. 111, 154501] Published Mon Oct 07, 2013
    Keywords: Nonlinear Dynamics, Fluid Dynamics, Classical Optics, etc.
    Print ISSN: 0031-9007
    Electronic ISSN: 1079-7114
    Topics: Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 7
    Publication Date: 2009-10-16
    Description: DNA cytosine methylation is a central epigenetic modification that has essential roles in cellular processes including genome regulation, development and disease. Here we present the first genome-wide, single-base-resolution maps of methylated cytosines in a mammalian genome, from both human embryonic stem cells and fetal fibroblasts, along with comparative analysis of messenger RNA and small RNA components of the transcriptome, several histone modifications, and sites of DNA-protein interaction for several key regulatory factors. Widespread differences were identified in the composition and patterning of cytosine methylation between the two genomes. Nearly one-quarter of all methylation identified in embryonic stem cells was in a non-CG context, suggesting that embryonic stem cells may use different methylation mechanisms to affect gene regulation. Methylation in non-CG contexts showed enrichment in gene bodies and depletion in protein binding sites and enhancers. Non-CG methylation disappeared upon induced differentiation of the embryonic stem cells, and was restored in induced pluripotent stem cells. We identified hundreds of differentially methylated regions proximal to genes involved in pluripotency and differentiation, and widespread reduced methylation levels in fibroblasts associated with lower transcriptional activity. These reference epigenomes provide a foundation for future studies exploring this key epigenetic modification in human disease and development.〈br /〉〈br /〉〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2857523/" target="_blank"〉〈img src="https://static.pubmed.gov/portal/portal3rc.fcgi/4089621/img/3977009" border="0"〉〈/a〉   〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2857523/" target="_blank"〉This paper as free author manuscript - peer-reviewed and accepted for publication〈/a〉〈br /〉〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Lister, Ryan -- Pelizzola, Mattia -- Dowen, Robert H -- Hawkins, R David -- Hon, Gary -- Tonti-Filippini, Julian -- Nery, Joseph R -- Lee, Leonard -- Ye, Zhen -- Ngo, Que-Minh -- Edsall, Lee -- Antosiewicz-Bourget, Jessica -- Stewart, Ron -- Ruotti, Victor -- Millar, A Harvey -- Thomson, James A -- Ren, Bing -- Ecker, Joseph R -- R01 HG003523/HG/NHGRI NIH HHS/ -- R01 HG003523-01/HG/NHGRI NIH HHS/ -- R01 HG003523-02/HG/NHGRI NIH HHS/ -- R01 HG003523-03/HG/NHGRI NIH HHS/ -- U01 1U01ES017166-01/ES/NIEHS NIH HHS/ -- U01 ES017166/ES/NIEHS NIH HHS/ -- England -- Nature. 2009 Nov 19;462(7271):315-22. doi: 10.1038/nature08514. Epub 2009 Oct 14.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Genomic Analysis Laboratory, The Salk Institute for Biological Studies, La Jolla, California 92037, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/19829295" target="_blank"〉PubMed〈/a〉
    Keywords: Cell Line ; Cluster Analysis ; DNA/metabolism ; *DNA Methylation ; DNA-Binding Proteins/metabolism ; Embryonic Stem Cells/metabolism ; *Epigenesis, Genetic ; Genome/*genetics ; Humans
    Print ISSN: 0028-0836
    Electronic ISSN: 1476-4687
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 8
    Publication Date: 2013-07-06
    Description: DNA methylation is implicated in mammalian brain development and plasticity underlying learning and memory. We report the genome-wide composition, patterning, cell specificity, and dynamics of DNA methylation at single-base resolution in human and mouse frontal cortex throughout their lifespan. Widespread methylome reconfiguration occurs during fetal to young adult development, coincident with synaptogenesis. During this period, highly conserved non-CG methylation (mCH) accumulates in neurons, but not glia, to become the dominant form of methylation in the human neuronal genome. Moreover, we found an mCH signature that identifies genes escaping X-chromosome inactivation. Last, whole-genome single-base resolution 5-hydroxymethylcytosine (hmC) maps revealed that hmC marks fetal brain cell genomes at putative regulatory regions that are CG-demethylated and activated in the adult brain and that CG demethylation at these hmC-poised loci depends on Tet2 activity.〈br /〉〈br /〉〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3785061/" target="_blank"〉〈img src="https://static.pubmed.gov/portal/portal3rc.fcgi/4089621/img/3977009" border="0"〉〈/a〉   〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3785061/" target="_blank"〉This paper as free author manuscript - peer-reviewed and accepted for publication〈/a〉〈br /〉〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Lister, Ryan -- Mukamel, Eran A -- Nery, Joseph R -- Urich, Mark -- Puddifoot, Clare A -- Johnson, Nicholas D -- Lucero, Jacinta -- Huang, Yun -- Dwork, Andrew J -- Schultz, Matthew D -- Yu, Miao -- Tonti-Filippini, Julian -- Heyn, Holger -- Hu, Shijun -- Wu, Joseph C -- Rao, Anjana -- Esteller, Manel -- He, Chuan -- Haghighi, Fatemeh G -- Sejnowski, Terrence J -- Behrens, M Margarita -- Ecker, Joseph R -- AI44432/AI/NIAID NIH HHS/ -- CA151535/CA/NCI NIH HHS/ -- HD065812/HD/NICHD NIH HHS/ -- HG006827/HG/NHGRI NIH HHS/ -- K99NS080911/NS/NINDS NIH HHS/ -- MH094670/MH/NIMH NIH HHS/ -- R01 AI044432/AI/NIAID NIH HHS/ -- R01 CA151535/CA/NCI NIH HHS/ -- R01 HD065812/HD/NICHD NIH HHS/ -- R01 HG006827/HG/NHGRI NIH HHS/ -- R01 MH094670/MH/NIMH NIH HHS/ -- R01 MH094774/MH/NIMH NIH HHS/ -- Howard Hughes Medical Institute/ -- New York, N.Y. -- Science. 2013 Aug 9;341(6146):1237905. doi: 10.1126/science.1237905. Epub 2013 Jul 4.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Genomic Analysis Laboratory, The Salk Institute for Biological Studies, La Jolla, CA 92037, USA. ryan.lister@uwa.edu.au〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/23828890" target="_blank"〉PubMed〈/a〉
    Keywords: 5-Methylcytosine/metabolism ; Adult ; Animals ; Base Sequence ; Conserved Sequence ; Cytosine/*analogs & derivatives/metabolism ; *DNA Methylation ; *Epigenesis, Genetic ; Epigenomics ; Frontal Lobe/*growth & development ; *Gene Expression Regulation, Developmental ; Genome-Wide Association Study ; Humans ; Longevity ; Mice ; Mice, Inbred C57BL ; X Chromosome Inactivation/genetics
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 9
    Publication Date: 2011-05-10
    Description: 5-hydroxymethylcytosine (5hmC) is a modified base present at low levels in diverse cell types in mammals. 5hmC is generated by the TET family of Fe(II) and 2-oxoglutarate-dependent enzymes through oxidation of 5-methylcytosine (5mC). 5hmC and TET proteins have been implicated in stem cell biology and cancer, but information on the genome-wide distribution of 5hmC is limited. Here we describe two novel and specific approaches to profile the genomic localization of 5hmC. The first approach, termed GLIB (glucosylation, periodate oxidation, biotinylation) uses a combination of enzymatic and chemical steps to isolate DNA fragments containing as few as a single 5hmC. The second approach involves conversion of 5hmC to cytosine 5-methylenesulphonate (CMS) by treatment of genomic DNA with sodium bisulphite, followed by immunoprecipitation of CMS-containing DNA with a specific antiserum to CMS. High-throughput sequencing of 5hmC-containing DNA from mouse embryonic stem (ES) cells showed strong enrichment within exons and near transcriptional start sites. 5hmC was especially enriched at the start sites of genes whose promoters bear dual histone 3 lysine 27 trimethylation (H3K27me3) and histone 3 lysine 4 trimethylation (H3K4me3) marks. Our results indicate that 5hmC has a probable role in transcriptional regulation, and suggest a model in which 5hmC contributes to the 'poised' chromatin signature found at developmentally-regulated genes in ES cells.〈br /〉〈br /〉〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3124347/" target="_blank"〉〈img src="https://static.pubmed.gov/portal/portal3rc.fcgi/4089621/img/3977009" border="0"〉〈/a〉   〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3124347/" target="_blank"〉This paper as free author manuscript - peer-reviewed and accepted for publication〈/a〉〈br /〉〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Pastor, William A -- Pape, Utz J -- Huang, Yun -- Henderson, Hope R -- Lister, Ryan -- Ko, Myunggon -- McLoughlin, Erin M -- Brudno, Yevgeny -- Mahapatra, Sahasransu -- Kapranov, Philipp -- Tahiliani, Mamta -- Daley, George Q -- Liu, X Shirley -- Ecker, Joseph R -- Milos, Patrice M -- Agarwal, Suneet -- Rao, Anjana -- 1 R01 HD065812-01A1/HD/NICHD NIH HHS/ -- 1 UL1 RR 025758-02/RR/NCRR NIH HHS/ -- K08 HL089150/HL/NHLBI NIH HHS/ -- K08 HL089150-01A1/HL/NHLBI NIH HHS/ -- R01 AI044432/AI/NIAID NIH HHS/ -- R01 AI044432-10/AI/NIAID NIH HHS/ -- R01 AI44432/AI/NIAID NIH HHS/ -- R01 HD065812/HD/NICHD NIH HHS/ -- R01 HD065812-01A1/HD/NICHD NIH HHS/ -- RC1 DA028422/DA/NIDA NIH HHS/ -- RC1 DA028422-02/DA/NIDA NIH HHS/ -- UL1 RR025758/RR/NCRR NIH HHS/ -- England -- Nature. 2011 May 19;473(7347):394-7. doi: 10.1038/nature10102. Epub 2011 May 8.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Harvard Medical School, Immune Disease Institute and Program in Cellular and Molecular Medicine, Children's Hospital Boston, Boston, Massachusetts 02115, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/21552279" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; Biotinylation ; Cell Line ; Cytosine/*analogs & derivatives/analysis/isolation & purification/metabolism ; DNA Methylation ; Embryonic Stem Cells/*metabolism ; Exons/genetics ; Gene Expression Regulation, Developmental/genetics ; Genome/*genetics ; Glucose/metabolism ; Mice ; Periodic Acid/metabolism ; Promoter Regions, Genetic/genetics ; Sequence Analysis, DNA/*methods ; Transcription Initiation Site ; Transcription, Genetic/genetics
    Print ISSN: 0028-0836
    Electronic ISSN: 1476-4687
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 10
    Publication Date: 2011-02-04
    Description: Induced pluripotent stem cells (iPSCs) offer immense potential for regenerative medicine and studies of disease and development. Somatic cell reprogramming involves epigenomic reconfiguration, conferring iPSCs with characteristics similar to embryonic stem (ES) cells. However, it remains unknown how complete the reestablishment of ES-cell-like DNA methylation patterns is throughout the genome. Here we report the first whole-genome profiles of DNA methylation at single-base resolution in five human iPSC lines, along with methylomes of ES cells, somatic cells, and differentiated iPSCs and ES cells. iPSCs show significant reprogramming variability, including somatic memory and aberrant reprogramming of DNA methylation. iPSCs share megabase-scale differentially methylated regions proximal to centromeres and telomeres that display incomplete reprogramming of non-CG methylation, and differences in CG methylation and histone modifications. Lastly, differentiation of iPSCs into trophoblast cells revealed that errors in reprogramming CG methylation are transmitted at a high frequency, providing an iPSC reprogramming signature that is maintained after differentiation.〈br /〉〈br /〉〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3100360/" target="_blank"〉〈img src="https://static.pubmed.gov/portal/portal3rc.fcgi/4089621/img/3977009" border="0"〉〈/a〉   〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3100360/" target="_blank"〉This paper as free author manuscript - peer-reviewed and accepted for publication〈/a〉〈br /〉〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Lister, Ryan -- Pelizzola, Mattia -- Kida, Yasuyuki S -- Hawkins, R David -- Nery, Joseph R -- Hon, Gary -- Antosiewicz-Bourget, Jessica -- O'Malley, Ronan -- Castanon, Rosa -- Klugman, Sarit -- Downes, Michael -- Yu, Ruth -- Stewart, Ron -- Ren, Bing -- Thomson, James A -- Evans, Ronald M -- Ecker, Joseph R -- 1U01ES017166-01/ES/NIEHS NIH HHS/ -- DK062434/DK/NIDDK NIH HHS/ -- P30 CA014195/CA/NCI NIH HHS/ -- U01 ES017166/ES/NIEHS NIH HHS/ -- U01 ES017166-01/ES/NIEHS NIH HHS/ -- Howard Hughes Medical Institute/ -- England -- Nature. 2011 Mar 3;471(7336):68-73. doi: 10.1038/nature09798. Epub 2011 Feb 2.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Genomic Analysis Laboratory, The Salk Institute for Biological Studies, La Jolla, California 92037, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/21289626" target="_blank"〉PubMed〈/a〉
    Keywords: Cell Differentiation/genetics ; Cell Line ; Cellular Reprogramming/*genetics ; CpG Islands/genetics ; DNA Methylation/*genetics ; Embryonic Stem Cells/cytology/metabolism ; Epigenomics ; Epistasis, Genetic/*genetics ; Fibroblasts/cytology/metabolism ; Genome, Human/*genetics ; Histones/metabolism ; Humans ; Induced Pluripotent Stem Cells/cytology/*metabolism ; Trophoblasts/cytology/metabolism
    Print ISSN: 0028-0836
    Electronic ISSN: 1476-4687
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...