ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

Language
Number of Hits per Page
Default Sort Criterion
Default Sort Ordering
Size of Search History
Default Email Address
Default Export Format
Default Export Encoding
Facet list arrangement
Maximum number of values per filter
Auto Completion
Topics (search only within journals and journal articles that belong to one or more of the selected topics)
Feed Format
Maximum Number of Items per Feed
feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
Collection
Years
  • 1
    Publication Date: 2016-01-01
    Description: Shock load analysis of two different samples of pressed HMX energetic material is performed using the Eulerian compressible multimaterial code SCIMITAR3D. The numerical framework uses an image to computation approach to perform shock analysis on real microstructures of the energetic samples. Image processing algorithms are applied on SEM images of both samples to implicitly represent the microstructures using level set functions. The chemical decomposition of HMX is modeled using the Henson-Smilowitz multi-step kinetic mechanism. It is observed that microstructural characteristics play a crucial role in determining the ignition behavior of the energetic materials. For the applied shock loads and for the particular samples investigated, class III sample leads to initiation of chemical reaction and the class V sample does not ignite. It is also shown that the orientation of elongated voids with respect to incident shock load is an important factor contributing to the initiation of chemical reactions in the class III sample. This is explained by performing numerical experiments of elongated void oriented at different angles with respect to the shock load. Results show the importance of microstructural details, such as void size, distribution, and orientation for initiation.
    Print ISSN: 0021-8979
    Electronic ISSN: 1089-7550
    Topics: Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...