ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

Language
Number of Hits per Page
Default Sort Criterion
Default Sort Ordering
Size of Search History
Default Email Address
Default Export Format
Default Export Encoding
Facet list arrangement
Maximum number of values per filter
Auto Completion
Topics (search only within journals and journal articles that belong to one or more of the selected topics)
Feed Format
Maximum Number of Items per Feed
feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
Collection
Publisher
Years
  • 1
    Publication Date: 2019
    Description: Forecasting user flows on transportation networks is a fundamental task for Intelligent Transport Systems (ITSs). Indeed, most control and management strategies on transportation systems are based on the knowledge of user flows. For implementing ITS strategies, the forecast of user flows on some network links obtained as a function of user flows on other links (for instance, where data are available in real time with sensors) may provide a significant contribution. In this paper, we propose the use of Artificial Neural Networks (ANNs) for forecasting metro onboard passenger flows as a function of passenger counts at station turnstiles. We assume that metro station turnstiles record the number of passengers entering by means of an automatic counting system and that these data are available every few minutes (temporal aggregation); the objective is to estimate onboard passengers on each track section of the line (i.e., between two successive stations) as a function of turnstile data collected in the previous periods. The choice of the period length may depend on service schedules. Artificial Neural Networks are trained by using simulation data obtained with a dynamic loading procedure of the rail line. The proposed approach is tested on a real-scale case: Line 1 of the Naples metro system (Italy). Numerical results show that the proposed approach is able to forecast the flows on metro sections with satisfactory precision.
    Electronic ISSN: 1424-8220
    Topics: Chemistry and Pharmacology , Electrical Engineering, Measurement and Control Technology
    Published by MDPI
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2018-08-13
    Description: Sensors, Vol. 18, Pages 2640: Spatial Extension of Road Traffic Sensor Data with Artificial Neural Networks Sensors doi: 10.3390/s18082640 Authors: Mariano Gallo Giuseppina De Luca This paper proposes a method for estimating traffic flows on some links of a road network knowing the data on other links that are monitored with sensors. In this way, it is possible to obtain more information on traffic conditions without increasing the number of monitored links. The proposed method is based on artificial neural networks (ANNs), wherein the input data are the traffic flows on some monitored road links and the output data are the traffic flows on some unmonitored links. We have implemented and tested several single-layer feed-forward ANNs that differ in the number of neurons and the method of generating datasets for training. The proposed ANNs were trained with a supervised learning approach where input and output example datasets were generated through traffic simulation techniques. The proposed method was tested on a real-scale network and gave very good results if the travel demand patterns were known and used for generating example datasets, and promising results if the demand patterns were not considered in the procedure. Numerical results have underlined that the ANNs with few neurons were more effective than the ones with many neurons in this specific problem.
    Electronic ISSN: 1424-8220
    Topics: Chemistry and Pharmacology , Electrical Engineering, Measurement and Control Technology
    Published by MDPI Publishing
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...