ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

Language
Number of Hits per Page
Default Sort Criterion
Default Sort Ordering
Size of Search History
Default Email Address
Default Export Format
Default Export Encoding
Facet list arrangement
Maximum number of values per filter
Auto Completion
Topics (search only within journals and journal articles that belong to one or more of the selected topics)
Feed Format
Maximum Number of Items per Feed
feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Publication Date: 2011-08-16
    Description: CD4(+) T-helper type 2 (T(H)2) cells, characterized by their expression of interleukin (IL)-4, IL-5, IL-9 and IL-13, are required for immunity to helminth parasites and promote the pathological inflammation associated with asthma and allergic diseases. Polymorphisms in the gene encoding the cytokine thymic stromal lymphopoietin (TSLP) are associated with the development of multiple allergic disorders in humans, indicating that TSLP is a critical regulator of T(H)2 cytokine-associated inflammatory diseases. In support of genetic analyses, exaggerated TSLP production is associated with asthma, atopic dermatitis and food allergies in patients, and studies in murine systems demonstrated that TSLP promotes T(H)2 cytokine-mediated immunity and inflammation. However, the mechanisms through which TSLP induces T(H)2 cytokine responses remain poorly defined. Here we demonstrate that TSLP promotes systemic basophilia, that disruption of TSLP-TSLPR interactions results in defective basophil responses, and that TSLPR-sufficient basophils can restore T(H)2-cell-dependent immunity in vivo. TSLP acted directly on bone-marrow-resident progenitors to promote basophil responses selectively. Critically, TSLP could elicit basophil responses in both IL-3-IL-3R-sufficient and -deficient environments, and genome-wide transcriptional profiling and functional analyses identified heterogeneity between TSLP-elicited versus IL-3-elicited basophils. Furthermore, activated human basophils expressed TSLPR, and basophils isolated from eosinophilic oesophagitis patients were distinct from classical basophils. Collectively, these studies identify previously unrecognized heterogeneity within the basophil cell lineage and indicate that expression of TSLP may influence susceptibility to multiple allergic diseases by regulating basophil haematopoiesis and eliciting a population of functionally distinct basophils that promote T(H)2 cytokine-mediated inflammation.〈br /〉〈br /〉〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3263308/" target="_blank"〉〈img src="https://static.pubmed.gov/portal/portal3rc.fcgi/4089621/img/3977009" border="0"〉〈/a〉   〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3263308/" target="_blank"〉This paper as free author manuscript - peer-reviewed and accepted for publication〈/a〉〈br /〉〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Siracusa, Mark C -- Saenz, Steven A -- Hill, David A -- Kim, Brian S -- Headley, Mark B -- Doering, Travis A -- Wherry, E John -- Jessup, Heidi K -- Siegel, Lori A -- Kambayashi, Taku -- Dudek, Emily C -- Kubo, Masato -- Cianferoni, Antonella -- Spergel, Jonathan M -- Ziegler, Steven F -- Comeau, Michael R -- Artis, David -- AI083480/AI/NIAID NIH HHS/ -- AI61570/AI/NIAID NIH HHS/ -- AI74878/AI/NIAID NIH HHS/ -- AI87990/AI/NIAID NIH HHS/ -- F31 GM082187/GM/NIGMS NIH HHS/ -- F32 AI085828/AI/NIAID NIH HHS/ -- R01 AI061570/AI/NIAID NIH HHS/ -- R01 AI061570-09/AI/NIAID NIH HHS/ -- R01 AI074878/AI/NIAID NIH HHS/ -- R01 AI074878-05/AI/NIAID NIH HHS/ -- R01 AI095466/AI/NIAID NIH HHS/ -- R01 AI095466-02/AI/NIAID NIH HHS/ -- R01 HL107589/HL/NHLBI NIH HHS/ -- R21 AI083480/AI/NIAID NIH HHS/ -- R21 AI083480-02/AI/NIAID NIH HHS/ -- T32 AI060516/AI/NIAID NIH HHS/ -- U01 AI095608/AI/NIAID NIH HHS/ -- U01 AI095608-02/AI/NIAID NIH HHS/ -- England -- Nature. 2011 Aug 14;477(7363):229-33. doi: 10.1038/nature10329.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Institute for Immunology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania 19104, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/21841801" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; Asthma/immunology ; Basophils/*cytology/metabolism ; Cytokines/genetics/immunology/*metabolism ; Dermatitis, Atopic/immunology ; Food Hypersensitivity/immunology ; *Hematopoiesis ; Humans ; Hypersensitivity, Immediate/*immunology ; Inflammation/*immunology/*metabolism ; *Interleukin-3/metabolism ; Mice ; Mice, Inbred BALB C ; Mice, Inbred C57BL ; Phenotype ; Receptors, Cytokine/metabolism ; Receptors, Interleukin-3/deficiency/genetics/metabolism ; Th2 Cells/immunology
    Print ISSN: 0028-0836
    Electronic ISSN: 1476-4687
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2016-03-17
    Description: Lung metastasis is the lethal determinant in many cancers and a number of lines of evidence point to monocytes and macrophages having key roles in its development. Yet little is known about the immediate fate of incoming tumour cells as they colonize this tissue, and even less known about how they make first contact with the immune system. Primary tumours liberate circulating tumour cells (CTCs) into the blood and we have developed a stable intravital two-photon lung imaging model in mice for direct observation of the arrival of CTCs and subsequent host interaction. Here we show dynamic generation of tumour microparticles in shear flow in the capillaries within minutes of CTC entry. Rather than dispersing under flow, many of these microparticles remain attached to the lung vasculature or independently migrate along the inner walls of vessels. Using fluorescent lineage reporters and flow cytometry, we observed 'waves' of distinct myeloid cell subsets that load differentially and sequentially with this CTC-derived material. Many of these tumour-ingesting myeloid cells collectively accumulated in the lung interstitium along with the successful metastatic cells and, as previously understood, promote the development of successful metastases from surviving tumour cells. Although the numbers of these cells rise globally in the lung with metastatic exposure and ingesting myeloid cells undergo phenotypic changes associated with microparticle ingestion, a consistently sparse population of resident conventional dendritic cells, among the last cells to interact with CTCs, confer anti-metastatic protection. This work reveals that CTC fragmentation generates immune-interacting intermediates, and defines a competitive relationship between phagocyte populations for tumour loading during metastatic cell seeding.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Headley, Mark B -- Bins, Adriaan -- Nip, Alyssa -- Roberts, Edward W -- Looney, Mark R -- Gerard, Audrey -- Krummel, Matthew F -- P01 HL024136/HL/NHLBI NIH HHS/ -- R21 CA167601/CA/NCI NIH HHS/ -- R21CA167601/CA/NCI NIH HHS/ -- U54 CA163123/CA/NCI NIH HHS/ -- England -- Nature. 2016 Mar 24;531(7595):513-7. doi: 10.1038/nature16985. Epub 2016 Mar 16.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Pathology, University of California, San Francisco, 513 Parnassus Ave, HSW512, San Francisco, California 94143-0511, USA. ; Department of Medical Oncology, Academic Medical Center Amsterdam, Meibergdreef, 91105AZ Amsterdam, The Netherlands. ; Departments of Medicine and Laboratory Medicine, University of California, San Francisco, 513 Parnassus Avenue, HSW512, California 94143-0511, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/26982733" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; Capillaries/pathology ; Cell Line, Tumor ; Cell Lineage ; *Cell Movement ; Dendritic Cells/cytology/immunology ; Female ; Genes, Reporter/genetics ; Humans ; Lung/blood supply/cytology/*immunology/*pathology ; Lung Neoplasms/*immunology/pathology/*secondary ; Male ; Melanoma, Experimental/immunology/pathology ; Mice ; Microscopy, Confocal ; Myeloid Cells/cytology ; Neoplasm Metastasis/*immunology/*pathology ; Neoplastic Cells, Circulating/pathology
    Print ISSN: 0028-0836
    Electronic ISSN: 1476-4687
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...