ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

Language
Number of Hits per Page
Default Sort Criterion
Default Sort Ordering
Size of Search History
Default Email Address
Default Export Format
Default Export Encoding
Facet list arrangement
Maximum number of values per filter
Auto Completion
Topics (search only within journals and journal articles that belong to one or more of the selected topics)
Feed Format
Maximum Number of Items per Feed
feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Publication Date: 2011-08-12
    Description: Drag influence on mission performance of hypersonic aircraft during climb and cruise, noting payload capacity
    Keywords: AIRCRAFT
    Type: ; ADEMIE DES SCIENCES
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2011-08-16
    Keywords: GENERAL
    Type: NACA Conf. on Aerodyn. of High Speed Aircraft; p 93-103
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    facet.materialart.
    Unknown
    In:  Other Sources
    Publication Date: 2011-08-18
    Description: The ILLIAC IV computer has been programmed with an implicit, finite-difference code for solving the thin layer compressible Navier-Stokes equation. Results presented for the case of the buffet boundaries of a conventional and a supercritical airfoil section at high Reynolds numbers are found to be in agreement with experimentally determined buffet boundaries, especially at the higher freestream Mach numbers and lower lift coefficients where the onset of unsteady flows is associated with shock wave-induced boundary layer separation.
    Keywords: AERODYNAMICS
    Type: AIAA Journal; 19; Nov. 198
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
    Publication Date: 2016-06-07
    Description: A code developed for simulating high Reynolds number transonic flow fields of arbitrary configuration is described. This code, in conjunction with laboratory experiments, is used to devise and test turbulence transport models which may be suitable in the prediction of such flow fields, with particular emphasis on regions of flow separation. The solutions describe the flow field, including both the shock-induced and trailing-edge separation regions, in sufficient detail to provide the profile and friction drag.
    Keywords: AERODYNAMICS
    Type: Aerodynamic Analyses Requiring Advanced Computers, Pt. 1; p 419-436
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 5
    Publication Date: 2019-05-30
    Description: Hypersonic aerodynamic stability and drag of ablating and nonablating models of blunt-faced reentry shape
    Keywords: SPACE VEHICLES
    Type: AIAA PAPER 66-61
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 6
    Publication Date: 2019-05-23
    Description: Free-flight techniques for hypersonic wind tunnel - measurement of local pressure and heat transfer and aerodynamic characteristics of model under steady-state ablation conditions
    Keywords: FACILITIES, RESEARCH, AND SUPPORT
    Type: NASA-TM-X-54707
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 7
    Publication Date: 2019-06-28
    Description: Results of computer code time dependent solutions of the two dimensional compressible Navier-Stokes equations and the results of independent experiments are compared to verify the Mach number range for instabilities in the transonic flow field about a 14 percent thick biconvex airfoil at an angle of attack of 0 deg and a Reynolds number of 7 million. The experiments were conducted in a transonic, slotted wall wind tunnel. The computer code included an algebraic eddy viscosity turbulence model developed for steady flows, and all computations were made using free flight boundary conditions. All of the features documented experimentally for both steady and unsteady flows were predicted qualitatively; even with the above simplifications, the predictions were, on the whole, in good quantitative agreement with experiment. In particular, predicted time histories of shock wave position, surface pressures, lift, and pitching moment were found to be in very good agreement with experiment for an unsteady flow. Depending upon the free stream Mach number for steady flows, the surface pressure downstream of the shock wave or the shock wave location was not well predicted.
    Keywords: NUMERICAL ANALYSIS
    Type: NASA-TM-81262 , A-8457
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 8
    Publication Date: 2019-06-27
    Description: A theoretical investigation has been made to design an isotope heat source capable of satisfying the conflicting thermal requirements of steady-state operation and atmosphere entry. The isotope heat source must transfer heat efficiently to a heat exchange during normal operation with a power system in space, and in the event of a mission abort, it must survive the thermal environment of atmosphere entry and ground impact without releasing radioactive material. A successful design requires a compatible integration of the internal components of the heat source with the external aerodynamic shape. To this end, configurational, aerodynamic, motion, and thermal analyses were coupled and iterated during atmosphere entries at suborbital through superorbital velocities at very shallow and very steep entry angles. Results indicate that both thermal requirements can be satisfied by a heat source which has a single stable aerodynamic orientation at hypersonic speeds. For such a design, the insulation material required to adequately protect the isotope fuel from entry heating need extend only half way around the fuel capsule on the aerodynamically stable (wind-ward) side of the heat source. Thus, a low-thermal-resistance, conducting heat path is provided on the opposite side of the heat source through which heat can be transferred to an adjacent heat exchanger during normal operation without exceeding specified temperature limits.
    Keywords: AERODYNAMICS
    Type: NASA-TN-D-6833 , A-4342
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 9
    Publication Date: 2019-06-27
    Description: A combined experimental and computational research program is described for testing and guiding turbulence modeling within regions of separation induced by shock waves incident in turbulent boundary layers. Specifically, studies are made of the separated flow the rear portion of an 18%-thick circular-arc airfoil at zero angle of attack in high Reynolds number supercritical flow. The measurements include distributions of surface static pressure and local skin friction. The instruments employed include highfrequency response pressure cells and a large array of surface hot-wire skin-friction gages. Computations at the experimental flow conditions are made using time-dependent solutions of ensemble-averaged Navier-Stokes equations, plus additional equations for the turbulence modeling.
    Keywords: FLUID MECHANICS AND HEAT TRANSFER
    Type: NASA-TM-X-73157 , A-6690
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 10
    Publication Date: 2019-06-27
    Description: Flight constraints and aerodynamic characteristics of hypersonic research aircraft
    Keywords: AIRCRAFT
    Type: NASA-TM-X-2222 , A-3567
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...