ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

Language
Number of Hits per Page
Default Sort Criterion
Default Sort Ordering
Size of Search History
Default Email Address
Default Export Format
Default Export Encoding
Facet list arrangement
Maximum number of values per filter
Auto Completion
Topics (search only within journals and journal articles that belong to one or more of the selected topics)
Feed Format
Maximum Number of Items per Feed
feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    ISSN: 1432-2242
    Keywords: Plant virus resistance ; Azuki bean mosaic virus ; Cowpea aphid-borne mosaic virus ; Soybean mosaic virus ; Watermelon mosaic virus
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology
    Notes: Abstract We have examined the genetics of systemic resistance in Phaseolus vulgaris to azuki bean mosaic virus (AzMV) and cowpea aphid-borne mosaic virus (CABMV) and the relationship of this resistance to a phenotypically similar resistance to watermelon mosaic virus (WMV) and soybean mosaic virus (SMV). In P. vulgaris cv ‘Great Northern 1140’ (GN1140), resistance to SMV and WMV has been attributed to the genes Smv and Wmv, respectively, which have been shown to segregate as a unit. Systemic resistance to AzMV is conferred by two incompletely dominant alleles, Azm1 and Azm2, at unlinked loci. At least three resistance alleles must be present at these two loci for systemic resistance to be expressed in the plant. Systemic resistance to CABMV in GN 1140 is conditioned by a dominant allele that has been designated Cam2. Under some environmental conditions, a recessive allele at an unlinked locus, cam3, also controls a resistant response to CABMV. Resistance to AzMV and CABMV does not assort independently from Wmv/Smv, but also does not consistently cosegregate, suggesting that perhaps in each case one of the factors involved in resistance is associated with Smv/Wmv.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    ISSN: 1432-2242
    Keywords: Plant virus resistance ; Potyvirus ; I gene Phaseolus vulgaris ; BCMV
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology
    Notes: Abstract We have identified monogenic dominant resistance to azuki bean mosaic poty virus (AzMV), passionfruit woodiness potyvirus-K (PWV-K), zucchini yellow mosaic potyvirus (ZYMV), and a dominant factor that conditioned lethal necrosis to Thailand Passiflora potyvirus (ThPV), in Phaseolus vulgaris ‘Black Turtle Soup 1’. Resistance to AzMV, PWV-K, ZYMV, watermelon mosaic potyvirus, cowpea aphid-borne mosaic potyvirus, blackeye cowpea mosaic potyvirus, and lethal necrosis to soybean mosaic potyvirus and ThPV cosegregated as a unit with the I gene for resistance to bean common mosaic potyvirus.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    ISSN: 1432-2242
    Keywords: Key words Plant virus resistance  ;  Azuki bean mosaic virus  ;  Cowpea aphid-borne mosaic virus  ; Soybean mosaic virus  ;  Watermelon mosaic virus
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology
    Notes: Abstract  We have examined the genetics of systemic resistance in Phaseolus vulgaris to azuki bean mosaic virus (AzMV) and cowpea aphid-borne mosaic virus (CABMV) and the relationship of this resistance to a phenotypically similar resistance to watermelon mosaic virus (WMV) and soybean mosaic virus (SMV). In P. vulgaris cv ‘Great Northern 1140’ (GN1140), resistance to SMV and WMV has been attributed to the genes Smv and Wmv, respectively, which have been shown to segregate as a unit. Systemic resistance to AzMV is conferred by two incompletely dominant alleles, Azm1 and Azm2, at unlinked loci. At least three resistance alleles must be present at these two loci for systemic resistance to be expressed in the plant. Systemic resistance to CABMV in GN 1140 is conditioned by a dominant allele that has been designated Cam2. Under some environmental conditions, a recessive allele at an unlinked locus, cam3, also controls a resistant response to CABMV. Resistance to AzMV and CABMV does not assort independently from Wmv/Smv, but also does not consistently cosegregate, suggesting that perhaps in each case one of the factors involved in resistance is associated with Smv/Wmv.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
    Electronic Resource
    Electronic Resource
    Springer
    Theoretical and applied genetics 74 (1987), S. 595-600 
    ISSN: 1432-2242
    Keywords: Plant virus resistance ; WMV-2 ; Phaseolus vulgaris L. ; I gene
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology
    Notes: Summary Resistance to watermelon mosaic virus-2 in Phaseolus vulgaris L. is conferred by two distinct dominant alleles at independent loci. Based on segregation data one locus is designated Wmv, the other, Hsw. The dominant allele Wmv from cv. Great Northern 1140 prevents systemic spread of the virus but viral replication occurs in inoculated tissue. In contrast, Hsw confers both local and systemic resistance to WMV-2 below 30C. At higher temperatures, plants that carry this allele in the absence of modifying or epistatic factors develop systemic veinal necrosis upon inoculation with the virus that results in rapid death. Patho-type specificity has not been demonstrated for either allele; both factors confer resistance to every isolate tested. A temperature-sensitive shift in epistasis is apparent between dominant alleles at these loci. Because Hsw is very tightly linked if not identical to the following genes for hypersensitivity to potyviruses I, (bean common mosaic virus), Bcm, (blackeye cowpea mosaic virus), Cam, (cowpea aphid-borne mosaic virus) and Hss (soybean mosaic virus), parental, reciprocal dihybrid F1 populations, and selected F3 families were inoculated with each of these viruses and held at 35 C. F1 populations developed vascular necrosis completely or primarily limited to inoculated tissue, while F3 families from WMV-2-susceptible segregates were uniformly susceptible to these viruses. The relationship between Hsw, Wmv and other genes for potyvirus resistance suggest patterns in the evolution of resistance and viral pathogenicity. Characterization of the resistance spectrum associated with each factor provides an additional criterion to distinguish genes for plant virus resistance.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...