ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

Language
Number of Hits per Page
Default Sort Criterion
Default Sort Ordering
Size of Search History
Default Email Address
Default Export Format
Default Export Encoding
Facet list arrangement
Maximum number of values per filter
Auto Completion
Topics (search only within journals and journal articles that belong to one or more of the selected topics)
Feed Format
Maximum Number of Items per Feed
feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
Collection
Years
  • 1
    Publication Date: 2011-10-12
    Description: Lifeguard (LFG) is an inhibitor of Fas-mediated cell death and is highly expressed in the cerebellum. We investigated the biological role of LFG in the cerebellum in vivo, using mice with reduced LFG expression generated by shRNA lentiviral transgenesis (shLFG mice) as well as LFG null mice. We found that LFG plays a role in cerebellar development by affecting cerebellar size, internal granular layer (IGL) thickness, and Purkinje cell (PC) development. All these features are more severe in early developmental stages and show substantial recovery overtime, providing a remarkable example of cerebellar plasticity. In adult mice, LFG plays a role in PC maintenance shown by reduced cellular density and abnormal morphology with increased active caspase 8 and caspase 3 immunostaining in shLFG and knockout (KO) PCs. We studied the mechanism of action of LFG as an inhibitor of the Fas pathway and provided evidence of the neuroprotective role of LFG in cerebellar granule neurons (CGNs) and PCs in an organotypic cerebellar culture system. Biochemical analysis of the Fas pathway revealed that LFG inhibits Fas-mediated cell death by interfering with caspase 8 activation. This result is supported by the increased number of active caspase 8-positive PCs in adult mice lacking LFG. These data demonstrate that LFG is required for proper development and survival of granular and Purkinje cells and suggest LFG may play a role in cerebellar disorders.
    Print ISSN: 0027-8424
    Electronic ISSN: 1091-6490
    Topics: Biology , Medicine , Natural Sciences in General
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...