ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

Language
Number of Hits per Page
Default Sort Criterion
Default Sort Ordering
Size of Search History
Default Email Address
Default Export Format
Default Export Encoding
Facet list arrangement
Maximum number of values per filter
Auto Completion
Topics (search only within journals and journal articles that belong to one or more of the selected topics)
Feed Format
Maximum Number of Items per Feed
feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Publication Date: 2019
    Description: 〈p〉Diamonds growing in the Earth’s mantle often trap inclusions of fluids that are highly saline in composition. These fluids are thought to emerge from deep in subduction zones and may also be involved in the generation of some of the kimberlite magmas. However, the source of these fluids and the mechanism of their transport into the mantle lithosphere are unresolved. Here, we present experimental results showing that alkali chlorides are stable solid phases in the mantle lithosphere below 110 km. These alkali chlorides are formed by the reaction of subducted marine sediments with peridotite and show identical K/Na ratios to fluid inclusions in diamond. At temperatures 〉1100°C and low pressures, the chlorides are unstable; here, potassium is accommodated in mica and melt. The reaction of subducted sediments with peridotite explains the occurrence of Mg carbonates and the highly saline fluids found in diamonds and in chlorine-enriched kimberlite magmas.〈/p〉
    Electronic ISSN: 2375-2548
    Topics: Natural Sciences in General
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...