ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

Language
Number of Hits per Page
Default Sort Criterion
Default Sort Ordering
Size of Search History
Default Email Address
Default Export Format
Default Export Encoding
Facet list arrangement
Maximum number of values per filter
Auto Completion
Topics (search only within journals and journal articles that belong to one or more of the selected topics)
Feed Format
Maximum Number of Items per Feed
feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    ISSN: 1442-9993
    Source: Blackwell Publishing Journal Backfiles 1879-2005
    Topics: Biology
    Notes: Abstract  Every year large proportions of northern Australia's tropical savanna landscapes are burnt, resulting in high fire frequencies and short intervals between fires. The dominant fire management paradigm in these regions is the use of low-intensity prescribed fire early in the dry season, to reduce the incidence of higher-intensity, more extensive wildfire later in the year. This use of frequent prescribed fire to mitigate against high-intensity wildfire has parallels with fire management in temperate forests of southern Australia. However, unlike in southern Australia, the ecological implications of high fire frequency have received little attention in the north. CSIRO and collaborators recently completed a landscape-scale fire experiment at Kapalga in Kakadu National Park, Northern Territory, Australia, and here we provide a synthesis of the effects of experimental fire regimes on biodiversity, with particular consideration of fire frequency and, more specifically, time-since-fire. Two recurring themes emerged from Kapalga. First, much of the savanna biota is remarkably resilient to fire, even of high intensity. Over the 5-year experimental period, the abundance of most invertebrate groups remained unaffected by fire treatment, as did the abundance of most vertebrate species, and we were unable to detect any effect of fire on floristic composition of the grass-layer. Riparian vegetation and associated stream biota, as well as small mammals, were notable exceptions to this general resilience. Second, the occurrence of fire, independent of its intensity, was often the major factor influencing fire-sensitive species. This was especially the case for extinction-prone small mammals, which have suffered serious population declines across northern Australia in recent decades. Results from Kapalga indicate that key components of the savanna biota of northern Australia favour habitat that has remained unburnt for at least several years. This raises a serious conservation concern, given that very little relatively long unburnt habitat currently occurs in conservation reserves, with most sites being burnt at least once every 2 years. We propose a conservation objective of increasing the area that remains relatively long unburnt. This could be achieved either by reducing the proportion of the landscape burnt each year, or by setting prescribed fires more strategically. The provision of appropriately long unburnt habitat is a conservation challenge for Australia's tropical savanna landscapes, just as it is for its temperate forests.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    ISSN: 1572-9761
    Keywords: ground-layer ; landscape function ; patch spacing ; runoff ; soil texture ; tree-layer
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology
    Notes: Abstract Fine-scale vegetation patches (〈5 m in width) are critically important in many landscapes because they function to obstruct surface flows of water and wind. These obstructions increase the infiltration of runoff and the capture of nutrients in runoff sediments and in wind-blown soil and litter. The importance of redistribution of runoff into runon patches from spaces between patches (fetches) is likely to be greater in drier than in wetter environments. In this paper we examine the hypothesis that the ratio of fetch to patch decreases as rainfall increases, and that this trend will be most evident on intermediate-textured soils because these soils are more prone to runoff. We measured fine-scale patches on 38 sites with sand, loam or clay soils. Sites were located along a 1000-mm rainfall gradient in the savannas of northern Australia. The width and intercept length of patches and the fetch between patches was measuring along line transects of 100–120 m oriented down slope. We found that the ratio of fetch to patch area did not decrease with decreasing rainfall, but increased on both sand and loam soils. This result was because with increasing rainfall mean spacing between patches disproportionally increased while mean patch size and cover declined. The cover of patches was negatively correlated with tree canopy cover, which significantly increased with rainfall. This negative correlation suggests that in higher rainfall savannas the size and spacing of ground-layer patches is controlled by the tree layer, and that as rainfall decreases this control decreases and runoff-runon processes increasingly structure the landscape. For savannas on clay soils these trends were not significant except that on the highest rainfall sites the cover of ground-layer patches was nearly 100% while trees were absent.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    ISSN: 1573-2959
    Keywords: aerial videography ; ecological indicators ; landscape ecology ; monitoring techniques ; remote sensing ; tropical savannas
    Source: Springer Online Journal Archives 1860-2000
    Topics: Energy, Environment Protection, Nuclear Power Engineering
    Notes: Abstract If the goal for managing rangelands is to achieve a balance between production and conservation, then monitoring is essential to detect change and apply corrective action. In some range-land areas of northern Australia, monitoring has detected a tilt in the production-conservation balance towards excessive production. How big is this imbalance? Can it shift back? Robust monitoring is needed to answer these questions. The aim is to know what to monitor, and where. For example, to detect changes caused by livestock on rangeland forage production and soil erosion, indicators linking grazing disturbances to landscape function are needed, that is, indicators that signal how well landscapes are capturing, concentrating, and utilizing scarce water, nutrient, and organic resources. Studies in Australia and the USA document that simple vegetation and soil patch attributes can be measured as indicators of the 'state of health' of landscape function. For example, field and remote sensing-based grazing studies in Australia document that landscapes with a high cover of perennial plant patches function effectively to capture runoff water and nutrients in sediments, whereas landscapes with a low cover of these patches do not — they are dysfunctional — as indicated by large patches of bare soil. Aerial videography is proving to be a robust technique for measuring indicators of landscape function such as small patches of vegetation and the extent of bare soil. These indicators typically have a sigmoidal response to grazing impacts. We illustrate that if these indicators are measured on monitoring sites established near the sigmoidal 'point of inflection’ then small changes in these indicators can be detected.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...