ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

Language
Number of Hits per Page
Default Sort Criterion
Default Sort Ordering
Size of Search History
Default Email Address
Default Export Format
Default Export Encoding
Facet list arrangement
Maximum number of values per filter
Auto Completion
Topics (search only within journals and journal articles that belong to one or more of the selected topics)
Feed Format
Maximum Number of Items per Feed
feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Electronic Resource
    Electronic Resource
    Oxford, UK : Blackwell Science Ltd
    Molecular microbiology 36 (2000), S. 0 
    ISSN: 1365-2958
    Source: Blackwell Publishing Journal Backfiles 1879-2005
    Topics: Biology , Medicine
    Notes: Glutaredoxins and thioredoxins are small heat-stable oxidoreductases that have been conserved throughout evolution. The yeast Saccharomyces cerevisiae contains two gene pairs encoding cytoplasmic glutaredoxins (GRX1, GRX2) and thioredoxins (TRX1, TRX2). We report here that the quadruple trx1 trx2 grx1 grx2 mutant is inviable and that either a single glutaredoxin or a single thioredoxin (i.e. grx1 grx2 trx1, grx1 grx2 trx2, grx1 trx1 trx2, grx2 trx1 trx2) is essential for viability. Loss of both thioredoxins has been reported previously to lead to methionine auxotrophy consistent with thioredoxins being the sole reductants for 3′-phosphoadenosine 5′-phosphosulphate reductase (PAPS) in yeast. However, we present evidence for the existence of a novel yeast hydrogen donor for PAPS reductase, as strains lacking both thioredoxins assimilated sulphate under conditions that minimized the generation of reactive oxygen species (low aeration and absence of functional mitochondria). In addition, the assimilation of [35S]-sulphate was approximately 60-fold higher in the trx1 trx2 grx1 and trx1 trx2 grx2 mutants compared with the trx1 trx2 mutant. Furthermore, in contrast to the trx1 trx2 mutant, the trx1 trx2 grx2 mutant grew on minimal agar plates, and the trx1 trx2 grx1 mutant grew on minimal agar plates under anaerobic conditions. We propose a model in which the novel reductase activity normally functions in the repair of oxidant-mediated protein damage but, under conditions that minimize the generation of reactive oxygen species, it can serve as a hydrogen donor for PAPS reductase.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    ISSN: 1365-2958
    Source: Blackwell Publishing Journal Backfiles 1879-2005
    Topics: Biology , Medicine
    Notes: SOD2, encoding manganese superoxide dismutase (MnSOD), is essential for stationary-phase survival of yeast cells. In addition, stationary-phase cells are more resistant to oxidative stress than exponential-phase cells. The use of a SOD2::lacZ fusion construct in this study shows that transcription of SOD2 increases 6.5-fold as cells enter stationary phase in rich, glucose medium. The increase in SOD2 expression appears to be due to two phenomena — the switch to a non-fermentable carbon source and nutrient limitation. Analysis of SOD2 transcription in mutant Saccharomyces cerevisiae strains showed that the gene was negatively regulated by intracellular cAMP levels which decrease as cells enter stationary phase. Mutation of ‘stress-responsive’ (STRE) elements in the SOD2 promoter which respond to cAMP levels resulted in the loss of cAMP-dependent expression but only partially reduced the increase in expression as cells entered stationary phase. A putative Yap1p-binding site was found to be inactive and mutation of YAP1 had no effect on the STRE-mediated expression. To fully eliminate the stationary-phase response, it was necessary to mutate a HAP2/3/4/5 complex binding site in addition to the STRE elements. It is postulated that the effects of the STRE sites and the HAP2/3/4/5 complex binding site are additive.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    ISSN: 1365-2958
    Source: Blackwell Publishing Journal Backfiles 1879-2005
    Topics: Biology , Medicine
    Notes: Glutathione (GSH) is an abundant cellular thiol which has been implicated in many cellular processes including protection against xenobiotics, carcinogens and free radicals. Utilization of GSH in both enzymic and non-enzymic defence mechanisms results in its conversion to the oxidized form (GSSG), and it must be recycled to GSH to maintain the high intracellular ratio of GSH to GSSG. Glutathione reductase (GLR) is a flavoenzyme, which catalyses reduction of GSSG to GSH using the reducing power of NADPH. We show that yeast mutants deleted for GLR1, encoding glutathione reductase, lack GLR activity and accumulate increased levels of GSSG. In addition, the glr1 mutant strain was unaffected in the inducible adaptive response to hydrogen peroxide, but showed increased sensitivity to oxidants including both peroxides and superoxide, indicating a requirement for GLR in protection against oxidative stress. Furthermore, GLR1 expression was elevated two to threefold in the presence of oxidants, and regulation was dependent upon the yAP-1 transcriptional activator protein. Thus, GLR1 is one of a growing number of genes involved in the protection of yeast cells against oxidative stress and regulated by yAP-1.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
    ISSN: 1365-2958
    Source: Blackwell Publishing Journal Backfiles 1879-2005
    Topics: Biology , Medicine
    Notes: Glutathione (GSH) is an abundant low-molecular-mass thiol which has been implicated in numerous cellular processes including protection against cytotoxic agents such as xenobiotics, carcinogens and free radicals. Utilization of GSH results in its conversion to the oxidized form (GSSG), and it is recycled to GSH by the action of glutathione reductase (GLR) using the reducing power of NADPH. We show that GLR activity is increased by three- to fourfold during stationary-phase growth compared to exponential phase growth, and that a yeast strain deleted for GLR1, encoding glutathione reductase, shows an elevated sensitivity to H2O2 challenge during stationary phase. These data indicate an increased requirement for GSH as the cell arrests growth and enters stationary phase. The stationary-phase increase in GLR activity is entirely dependent upon the action of the yAP-1 transcriptional regulatory protein, previously implicated in regulating GLR activity in response to oxidative stress. Thus, both oxidant- and growth phase-mediated control of GLR1 expression are regulated by the same transcriptional control mechanism. In addition, strains lacking GLR or yAP-1 do not accumulate GSSG during stationary-phase growth, indicating that the cell possesses alternative means of preventing an accumulation of GSSG during stationary phase.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 5
    ISSN: 1365-2958
    Source: Blackwell Publishing Journal Backfiles 1879-2005
    Topics: Biology , Medicine
    Notes: The yeast SPS19 gene encoding the peroxisomally targeted 2,4-dienoyl-CoA reductase shares its promoter region (291 bp) with the sporulation-specific gene SPS18. SPS19 is induced during sporulation in diploids but to a lesser extent than SPS18; under oleate induction conditions, SPS19, but not SPS18, is transcribed via an oleate response element (ORE) independently of ploidy or sporulation. The SPS19 ORE is the binding target of the Pip2p and Oaf1p transcription factors, and an SPS19–lacZ reporter gene, which is highly expressed in oleate-induced cells, is not activated in haploids devoid of either protein. We examined the expression of CYC1–lacZ reporter constructs carrying the SPS19 and CTA1 OREs in diploids propagated under sporulation conditions and have shown that OREs are not sufficient for heterologous expression during yeast development. In addition, diploids deleted at either PIP2 or OAF1 demonstrated abundant ascosporogenesis, indicating that these genes are not essential for sporulation. A Δpex6 strain lacking peroxisomal structures and one devoid of fatty acyl-CoA oxidase (Δpox1), the first step in fungal β-oxidation, were both proficient for sporulation and, hence, β-oxidation and the peroxisomal compartment containing it are dispensable for meiotic development.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 6
    Electronic Resource
    Electronic Resource
    Oxford BSL : Blackwell Science Ltd
    Molecular microbiology 19 (1996), S. 0 
    ISSN: 1365-2958
    Source: Blackwell Publishing Journal Backfiles 1879-2005
    Topics: Biology , Medicine
    Notes: The glycine decarboxylase complex (GDC) is composed of four subunits referred to as H-, L-, P-, and T-proteins. The Saccharomyces cerevisiaeGCV2 gene, encoding the P-protein has been cloned by complementation of the gsd2 mutation which prevents cells converting glycine to serine or using glycine as the sole nitrogen source. The gene, located on the right arm of chromosome XIII adjacent to TPS1, encodes a product with a Mr of 114 385. Expression of GCV2 was induced by the addition of more than 200 μM glycine in the medium, and a maximal sixfold induction occurred above 1 mM. This response was specific to glycine and was not observed for any other amino acid. Under the same conditions, the intracellular level of glycine increased up to 30-fold. The levels of P- and L-protein transcripts and GDC activity were also elevated in cells grown in the presence of glycine. Deletion analysis of the GCV2 promoter delimited the control region which contains putative regulatory sites for GCN4 and GLN3 transcription factors.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 7
    ISSN: 1365-2958
    Source: Blackwell Publishing Journal Backfiles 1879-2005
    Topics: Biology , Medicine
    Notes: Our previous studies have shown that glutathione is an essential metabolite in the yeast Saccharomyces cerevisiae because a mutant deleted for GSH1, encoding the first enzyme in γ-l-glutamyl-l-cysteinylglycine (GSH) biosynthesis, cannot grow in its absence. In contrast, strains deleted for GSH2, encoding the second step in GSH synthesis, grow poorly as the dipeptide intermediate, γ-glutamylcysteine, can partially substitute for GSH. In this present study, we identify two high copy suppressors that rescue the poor growth of the gsh2 mutant in the absence of GSH. The first contains GSH1, indicating that γ-glutamylcysteine can functionally replace GSH if it is present in sufficiently high quantities. The second contains CDC34, encoding a ubiquitin conjugating enzyme, indicating a link between the ubiquitin and GSH stress protective systems. We show that CDC34 rescues the growth of the gsh2 mutant by inducing the Met4-dependent expression of GSH1 and elevating the cellular levels of γ-glutamylcysteine. Furthermore, this mechanism normally operates to regulate GSH biosynthesis in the cell, as GSH1 promoter activity is induced in a Met4-dependent manner in a gsh1 mutant which is devoid of GSH, and the addition of exogenous GSH represses GSH1 expression. Analysis of a cis2 mutant, which cannot breakdown GSH, confirmed that GSH and not a metabolic product, serves as the regulatory molecule. However, this is not a general mechanism affecting all Met4-regulated genes, as MET16 expression is unaffected in a gsh1 mutant, and GSH acts as a poor repressor of MET16 expression compared with methionine. In summary, GSH biosynthesis is regulated in parallel with sulphate assimilation by activity of the Met4 protein, but GSH1-specific mechanisms exist that respond to GSH availability.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 8
    Electronic Resource
    Electronic Resource
    [s.l.] : Nature Publishing Group
    Nature 255 (1975), S. 707-708 
    ISSN: 1476-4687
    Source: Nature Archives 1869 - 2009
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Notes: [Auszug] In these circumstances a useful beginning to genetic study of developmental control is to isolate mutants which undergo development in conditions in which the wild type does not. Such derepressed mutants will be altered in the initiation of morphogenesis. As we are dealing here with microbial ...
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 9
    Electronic Resource
    Electronic Resource
    Oxford, UK : Blackwell Publishing Ltd
    FEMS microbiology letters 140 (1996), S. 0 
    ISSN: 1574-6968
    Source: Blackwell Publishing Journal Backfiles 1879-2005
    Topics: Biology
    Notes: Abstract Characterisation of two genes in Pseudomonas sp. S91 that are responsive to carbon dioxide is reported. These were identified by random transposon mutagenesis leading to fusion of the Escherichia coli lacZ reporter gene to the genes of interest. Expression of the genes' promoters was quantified by measuring the reporter gene product, β-galactosidase. β-Galactosidase synthesis was induced when cells were exposed to 10% CO2 on solid media or during growth in aqueous phase when the culture density was greater than 1 at 610 nm, in either rich or minimal media. Induction of β-galactosidase synthesis was not due to: increased alkalinity, onset of stationary phase, build up of soluble metabolites in the culture supernatant, or cell density-dependent signalling. The CO2-inducible gene fusions were not induced by other environmental conditions that are known to stimulate global regulators of environmental gene expression. Benzole acid (2 mM) induced β-galactosidase synthesis in one of the mutants indicating the CO2 response may involve the intracellular CO2 partial pressure/bicarbonate ion concentration/pH equilibrium.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 10
    Electronic Resource
    Electronic Resource
    [s.l.] : Nature Publishing Group
    Nature 250 (1974), S. 709-712 
    ISSN: 1476-4687
    Source: Nature Archives 1869 - 2009
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Notes: [Auszug] The timing of individual nuclear gene replication during S phase in an eukaryote can now be studied by nitrosoguanidine mutagenesis. Using this technique, results also suggested that mitochondrial DNA replication is synchronous and a late event in the cell ...
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...