ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

Language
Number of Hits per Page
Default Sort Criterion
Default Sort Ordering
Size of Search History
Default Email Address
Default Export Format
Default Export Encoding
Facet list arrangement
Maximum number of values per filter
Auto Completion
Topics (search only within journals and journal articles that belong to one or more of the selected topics)
Feed Format
Maximum Number of Items per Feed
feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • Articles  (9)
  • Coral  (4)
  • East Asian monsoon  (3)
  • AAIW  (2)
  • 1
    Publication Date: 2022-05-25
    Description: Author Posting. © Elsevier B.V., 2008. This is the author's version of the work. It is posted here by permission of Elsevier B.V. for personal use, not for redistribution. The definitive version was published in Chemical Geology 257 (2008): 240-246, doi:10.1016/j.chemgeo.2008.10.002.
    Description: Sediments of the upper 28.2 meters of Ocean Drilling Program (ODP) Site 1145 from the northern South China Sea (SCS) were analyzed for their geochemical composition. Most of the major and trace elements exhibit significant fluctuations at glacial-interglacial scales, implying a close relation with regional and global climate change. Al-normalized elemental ratios can be subdivided into three principal components (PC). PC1 (e.g., Ca/Al, Ba/Al, Sr/Al) displays significant glacial-interglacial variation and is related to paleoproductivity in the northern SCS. PC2 (e.g., K/Al, Mg/Al, Rb/Al) is associated with the degree of chemical weathering in the source regions and shows little glacial-interglacial variation. PC3 (e.g., Ti/Al, Zr/Al) reflects the relative contribution of coarse- and fine-grained materials in the terrigenous components of the SCS sediments, likely associated with changes in sea level and monsoon-induced fluvial input. Spectral analyses indicate that paleoproductivity (i.e., Ba/Al) in the South China Sea lags Hulu/Sanbao speleothem δ18O record (a indicator of annual average meteoric precipitation) by 102° and Indian summer monsoon (multi-proxy stack) by 23° at the precession band, indicating a close relationship with the Indian summer monsoon. However, the chemical weathering degree in the source area (PC2) is not sensitive to monsoon-related changes at the precession band during the last climatic cycle.
    Description: This study was supported by the NSFC to Y.B. Sun and the US NSF to D.W. Oppo (OCE 0502960) and S.C. Clemens (OCE 0352215).
    Keywords: South China Sea ; Major and trace elements ; Elemental ratios ; East Asian monsoon
    Repository Name: Woods Hole Open Access Server
    Type: Preprint
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2022-05-25
    Description: Author Posting. © American Geophysical Union, 2012. This article is posted here by permission of American Geophysical Union for personal use, not for redistribution. The definitive version was published in Paleoceanography 27 (2012): PA3231, doi:10.1029/2012PA002313.
    Description: Accurate low-latitude sea surface temperature (SST) records that predate the instrumental era are needed to put recent warming in the context of natural climate variability and to evaluate the persistence of lower frequency climate variability prior to the instrumental era and the possible influence of anthropogenic climate change on this variability. Here we present a 235-year-long SST reconstruction based on annual growth rates (linear extension) of three colonies of the Atlantic coral Siderastrea siderea sampled at two sites on the northeastern Yucatan Peninsula, Mexico, located within the Atlantic Warm Pool (AWP). AWP SSTs vary in concert the Atlantic Multidecadal Oscillation (AMO), a basin-wide, quasiperiodic (∼60–80 years) oscillation of North Atlantic SSTs. We demonstrate that the annual linear growth rates of all three coral colonies are significantly inversely correlated with SST. We calibrate annual linear growth rates to SST between 1900 and 1960 AD. The linear correlation coefficient over the calibration period is r = −0.77 and −0.66 over the instrumental record (1860–2008 AD). We apply our calibration to annual linear growth rates to extend the SST record to 1775 AD and show that multidecadal SST variability has been a persistent feature of the AWP, and likely, of the North Atlantic over this time period. Our results imply that tropical Atlantic SSTs remained within 1°C of modern values during the past 225 years, consistent with a previous reconstruction based on coral growth rates and with most estimates based on the Mg/Ca of planktonic foraminifera from marine sediments.
    Description: Funding was provided by a scholarship to L.F.V.B. from ‘Consejo Nacional de Ciencia y Tecnología’ (CONACyT-Mexico), by CONACyT projects 104358 and 23749 to P.B., and by NSF OCE-0926986 to A.L.C. and D.W.O.
    Description: 2013-03-29
    Keywords: Atlantic Warm Pool ; Atlantic multidecadal variability ; Little Ice Age ; Sr/Ca ; Coral ; Sea surface temperature
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2022-05-25
    Description: Author Posting. © American Geophysical Union, 2017. This article is posted here by permission of American Geophysical Union for personal use, not for redistribution. The definitive version was published in Paleoceanography 32 (2017): 146–160, doi:10.1002/2016PA002976.
    Description: Coral skeletons are valuable archives of past ocean conditions. However, interpretation of coral paleotemperature records is confounded by uncertainties associated with single-element ratio thermometers, including Sr/Ca. A new approach, Sr-U, uses U/Ca to constrain the influence of Rayleigh fractionation on Sr/Ca. Here we build on the initial Pacific Porites Sr-U calibration to include multiple Atlantic and Pacific coral genera from multiple coral reef locations spanning a temperature range of 23.15–30.12°C. Accounting for the wintertime growth cessation of one Bermuda coral, we show that Sr-U is strongly correlated with the average water temperature at each location (r2 = 0.91, P 〈 0.001, n = 19). We applied the multispecies spatial calibration between Sr-U and temperature to reconstruct a 96 year long temperature record at Mona Island, Puerto Rico, using a coral not included in the calibration. Average Sr-U derived temperature for the period 1900–1996 is within 0.12°C of the average instrumental temperature at this site and captures the twentieth century warming trend of 0.06°C per decade. Sr-U also captures the timing of multiyear variability but with higher amplitude than implied by the instrumental data. Mean Sr-U temperatures and patterns of multiyear variability were replicated in a second coral in the same grid box. Conversely, Sr/Ca records from the same two corals were inconsistent with each other and failed to capture absolute sea temperatures, timing of multiyear variability, or the twentieth century warming trend. Our results suggest that coral Sr-U paleothermometry is a promising new tool for reconstruction of past ocean temperatures.
    Description: NSF Graduate Research Fellowships Grant Numbers: NSF-OCE-1338320, NSF-OCE-1031971, NSF-OCE-0926986; WHOI Access to the Sea Grant Numbers: 27500056, 0734826; NSF HRD; UPR Central Administration to EAHD through the Center for Applied Tropical Ecology and Conservation of UPR
    Description: 2017-08-16
    Keywords: Coral ; Temperature ; Paleoceangraphy ; Paleothermometry ; Global warming ; Biomineralization
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
    Publication Date: 2022-05-25
    Description: Author Posting. © American Geophysical Union, 2005. This article is posted here by permission of American Geophysical Union for personal use, not for redistribution. The definitive version was published in Paleoceanography 20 (2005): PA4005, doi:10.1029/2004PA001061.
    Description: Detailed deglacial and Holocene records of planktonic δ18O and Mg/Ca–based sea surface temperature (SST) from the Okinawa Trough suggest that at ∼18 to 17 thousand years before present (kyr B.P.), late spring/early summer SSTs were approximately 3°C cooler than today, while surface waters were up to 1 practical salinity unit saltier. These conditions are consistent with a weaker influence of the summer East Asian Monsoon (EAM) than today. The timing of suborbital SST oscillations suggests a close link with abrupt changes in the EAM and North Atlantic climate. A tropical influence, however, may have resulted in subtle decoupling between the North Atlantic and the Okinawa Trough/EAM during the deglaciation. Okinawa Trough surface water trends in the Holocene are consistent with model simulations of an inland shift of intense EAM precipitation during the middle Holocene. Millennial-scale alternations between relatively warm, salty conditions and relatively cold, fresh conditions suggest varying influence of the Kuroshio during the Holocene.
    Description: Funding for this research was provided by NSFC (grants 40106006 and 40206007), SKLLQG (grant LLQG0204), and the NSF (OCE-020776 to DWO). Y.S.'s visit to WHOI was supported via a NSF START Fellowship.
    Keywords: Okinawa Trough ; Deglaciation ; Holocene ; Kuroshio Current ; East Asian monsoon ; Mg/Ca ; Oxygen isotopes ; Foraminifera
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 5
    Publication Date: 2022-05-25
    Description: Author Posting. © American Geophysical Union, 2008. This article is posted here by permission of American Geophysical Union for personal use, not for redistribution. The definitive version was published in Paleoceanography 23 (2008): PA3102, doi:10.1029/2007PA001572.
    Description: We analyzed strontium/calcium ratios (Sr/Ca) in four colonies of the Atlantic coral genus Montastrea with growth rates ranging from 2.3 to 12.6 mm a−1. Derived Sr/Ca–sea surface temperature (SST) calibrations exhibit significant differences among the four colonies that cannot be explained by variations in SST or seawater Sr/Ca. For a single coral Sr/Ca ratio of 8.8 mmol mol−1, the four calibrations predict SSTs ranging from 24.0° to 30.9°C. We find that differences in the Sr/Ca–SST relationships are correlated systematically with the average annual extension rate (ext) of each colony such that Sr/Ca (mmol mol−1) = 11.82 (±0.13) – 0.058 (±0.004) × ext (mm a−1) – 0.092 (±0.005) × SST (°C). This observation is consistent with previous reports of a link between coral Sr/Ca and growth rate. Verification of our growth-dependent Sr/Ca–SST calibration using a coral excluded from the calibration reconstructs the mean and seasonal amplitude of the actual recorded SST to within 0.3°C. Applying a traditional, nongrowth-dependent Sr/Ca–SST calibration derived from a modern Montastrea to the Sr/Ca ratios of a conspecific coral that grew during the early Little Ice Age (LIA) (400 years B.P.) suggests that Caribbean SSTs were 〉5°C cooler than today. Conversely, application of our growth-dependent Sr/Ca–SST calibration to Sr/Ca ratios derived from the LIA coral indicates that SSTs during the 5-year period analyzed were within error (±1.4°C) of modern values.
    Description: This work was funded by National Science Foundation (NSF) grant OCE- 0402728, the WHOI Ocean and Climate Change Institute, and an NSF Graduate Student Fellowship.
    Keywords: Coral ; Strontium/calcium ; Growth rate
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 6
    Publication Date: 2022-10-26
    Description: © The Author(s), 2019. This article is distributed under the terms of the Creative Commons Attribution-NonCommercial‐NoDerivs License. The definitive version was published in Rodriguez, L. G., Cohen, A. L., Ramirez, W., Oppo, D. W., Pourmand, A., Edwards, R. L., Alpert, A. E., & Mollica, N. Mid-Holocene, coral-based sea surface temperatures in the western tropical Atlantic. Paleoceanography and Paleoclimatology, 34(7), (2019): 1234-1245, doi:10.1029/2019PA003571.
    Description: The Holocene is considered a period of relative climatic stability, but significant proxy data‐model discrepancies exist that preclude consensus regarding the postglacial global temperature trajectory. In particular, a mid‐Holocene Climatic Optimum, ~9,000 to ~5,000 years BP, is evident in Northern Hemisphere marine sediment records, but its absence from model simulations raises key questions about the ability of the models to accurately simulate climate and seasonal biases that may be present in the proxy records. Here we present new mid‐Holocene sea surface temperature (SST) data from the western tropical Atlantic, where twentieth‐century temperature variability and amplitude of warming track the twentieth‐century global ocean. Using a new coral thermometer Sr‐U, we first developed a temporal Sr‐U SST calibration from three modern Atlantic corals and validated the calibration against Sr‐U time series from a fourth modern coral. Two fossil corals from the Enriquillo Valley, Dominican Republic, were screened for diagenesis, U‐series dated to 5,199 ± 26 and 6,427 ± 81 years BP, respectively, and analyzed for Sr/Ca and U/Ca, generating two annually resolved Sr‐U SST records, 27 and 17 years long, respectively. Average SSTs from both corals were significantly cooler than in early instrumental (1870–1920) and late instrumental (1965–2016) periods at this site, by ~0.5 and ~0.75 °C, respectively, a result inconsistent with the extended mid‐Holocene warm period inferred from sediment records. A more complete sampling of Atlantic Holocene corals can resolve this issue with confidence and address questions related to multidecadal and longer‐term variability in Holocene Atlantic climate.
    Description: This study was supported by NSF OCE 1747746 to Anne Cohen and by NSF OCE 1805618 to Anne Cohen and Delia Oppo. Eric Loss and his crew on Pangaea Exploration's Sea Dragon enabled fieldwork in Martinique, and George P. Lohman, Thomas DeCarlo, and Hanny Rivera assisted with coral coring. Kathryn Pietro and Julia Middleton assisted in the laboratory, and Louis Kerr provided technical support on the SEM at MBL. Gretchen Swarr provided technical support on the Element and iCap ICPMS at WHOI. We also thank Edwin Hernandez, Jose Morales, and Amos Winter for discussion. All data generated in this study will be made publicly available at http://www.ncdc.noaa.gov/data‐ access/paleoclimatology‐data/datasets
    Keywords: Mid‐Holocene ; Proxy SST ; Sr‐U thermometer ; Tropical Atlantic ; Climatic Optimum ; Coral
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 7
    Publication Date: 2022-05-26
    Description: Author Posting. © American Geophysical Union, 2017. This article is posted here by permission of American Geophysical Union for personal use, not for redistribution. The definitive version was published in Paleoceanography 32 (2017): 1036–1053, doi:10.1002/2017PA003092.
    Description: Antarctic Intermediate Water (AAIW) plays important roles in the global climate system and the global ocean nutrient and carbon cycles. However, it is unclear how AAIW responds to global climate changes. In particular, neodymium isotopic composition (εNd) reconstructions from different locations from the tropical Atlantic have led to a debate on the relationship between northward penetration of AAIW into the tropical Atlantic and the Atlantic meridional overturning circulation (AMOC) variability during the last deglaciation. We resolve this controversy by studying the transient oceanic evolution during the last deglaciation using a neodymium-enabled ocean model. Our results suggest a coherent response of AAIW and AMOC: when AMOC weakens, the northward penetration and transport of AAIW decrease while its depth and thickness increase. Our study highlights that as part of the return flow of the North Atlantic Deep Water, the northward penetration of AAIW in the Atlantic is determined predominately by AMOC intensity. Moreover, the inconsistency among different tropical Atlantic εNd reconstructions is reconciled by considering their corresponding core locations and depths, which were influenced by different water masses in the past. The very radiogenic water from the bottom of the Gulf of Mexico and the Caribbean Sea, which was previously overlooked in the interpretations of deglacial εNd variability, can be transported to shallow layers during active AMOC and modulates εNd in the tropical Atlantic. Changes in the AAIW core depth must also be considered. Thus, interpretation of εNd reconstructions from the tropical Atlantic is more complicated than suggested in previous studies.
    Description: NSF P2C2. Grant Numbers: NSF1401778, NSF1401802 DOE Grant Number: DE-SC0006744; NSFC Grant Numbers: 41630527, 41130105; Swiss National Science Foundation; WHOI Investing in Science Program; U.S. DOE the RGCM program; LDRD
    Description: 2018-04-24
    Keywords: AAIW ; AMOC ; Deglacial ; Neodymium isotope ; Paleocirculation tracer
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 8
    Publication Date: 2022-05-26
    Description: Author Posting. © American Geophysical Union, 2010. This article is posted here by permission of American Geophysical Union for personal use, not for redistribution. The definitive version was published in Paleoceanography 25 (2010): PA4101, doi:10.1029/2010PA001962.
    Description: Paleoceanographic studies using benthic foraminiferal Cd as a nutrient tracer have provided a robust means of reconstructing glacial Atlantic Ocean water mass geometry, but a paucity of data from the South Atlantic above 1200 m has limited investigation of Antarctic Intermediate Water (AAIW) configuration and formation. A new Cd depth profile from Brazil margin sediments suggests that AAIW penetrated northward at 1100 m to at least 27°S in the glacial Atlantic. It exhibited substantially reduced δ13Cas values, confirming preliminary evidence that this AAIW was unique to the glacial Atlantic and that it formed differently than today, with less atmospheric contact.
    Keywords: Cadmium ; Last glacial maximum ; Atlantic Ocean ; AAIW
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 9
    Publication Date: 2022-05-26
    Description: Author Posting. © American Geophysical Union, 2010. This article is posted here by permission of American Geophysical Union for personal use, not for redistribution. The definitive version was published in Geophysical Research Letters 37 (2010): L23603, doi:10.1029/2010GL045202.
    Description: Ice core records of polar temperatures and greenhouse gases document abrupt millennial-scale oscillations that suggest the reduction or shutdown of thermohaline Circulation (THC) in the North Atlantic Ocean may induce the abrupt cooling in the northern hemisphere. It remains unknown, however, whether the sea surface temperature (SST) is cooling or warming in the Kuroshio of the Northwestern Pacific during the cooling event. Here we present an AMS 14C-dated foraminiferal Mg/Ca SST record from the central Okinawa Trough and document that the SST variations exhibit two steps of warming since 21 ka — at 14.7 ka and 12.8 ka, and a cooling (∼1.5°C) during the interval of the Younger Dryas. By contrast, we observed no SST change or oceanic warming (∼1.5–2°C) during the episodes of Northern Hemisphere cooling between ∼21–40 ka. We therefore suggest that the “Antarctic-like” timing and amplitude of millennial-scale SST variations in the subtropical Northwestern Pacific between 20–40 ka may have been determined by rapid ocean adjustment processes in response to abrupt wind stress and meridional temperature gradient changes in the North Pacific.
    Description: This research was funded by the National Science Council (NSC), Taiwan to M.T.C. (NSC96‐2611‐M‐019‐008 and NSC96‐2611‐M‐019‐009) and C.C.S. (NSC98‐2611‐M002‐006). X.P.L. was supported by the Natural Science Foundation of China (40930844 and 40706006), China’s National Basic Research Priorities Programmer (2005CB422303 and 2007CB411804), 111 Project (B07036), and the Program for New Century Excellent Talents in University (NECT‐07‐0781).
    Keywords: Kuroshio ; Pacific ; Sea surface temperature ; Mg/Ca ; Oxygen isotope ; East Asian monsoon
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Format: text/plain
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...