ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

Language
Number of Hits per Page
Default Sort Criterion
Default Sort Ordering
Size of Search History
Default Email Address
Default Export Format
Default Export Encoding
Facet list arrangement
Maximum number of values per filter
Auto Completion
Topics (search only within journals and journal articles that belong to one or more of the selected topics)
Feed Format
Maximum Number of Items per Feed
feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Publication Date: 2019-06-28
    Description: Five single plate penetration equations are compared for accuracy and effectiveness. These five equations are two well-known equations (Fish-Summers and Schmidt-Holsapple), two equations developed by the Apollo project (Rockwell and Johnson Space Center (JSC), and one recently revised from JSC (Cour-Palais). They were derived from test results, with velocities ranging up to 8 km/s. Microsoft Excel software was used to construct a spreadsheet to calculate the diameters and masses of projectiles for various velocities, varying the material properties of both projectile and target for the five single plate penetration equations. The results were plotted on diameter versus velocity graphs for ballistic and spallation limits using Cricket Graph software, for velocities ranging from 2 to 15 km/s defined for the orbital debris. First, these equations were compared to each other, then each equation was compared with various aluminum projectile densities. Finally, these equations were compared with test results performed at JSC for the Marshall Space Flight Center. These equations predict a wide variety of projectile diameters at a given velocity. Thus, it is very difficult to choose the 'right' prediction equation. The thickness of a single plate could have a large variation by choosing a different penetration equation. Even though all five equations are empirically developed with various materials, especially for aluminum alloys, one cannot be confident in the shield design with the predictions obtained by the penetration equations without verifying by tests.
    Keywords: NUMERICAL ANALYSIS
    Type: NASA-TM-103565 , NAS 1.15:103565
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    facet.materialart.
    Unknown
    In:  CASI
    Publication Date: 2019-06-28
    Description: The fraction of faults detected for a digital network is frequently high for the first few input combinations applied out of a set of test vectors. When the particular ordering of test patterns does not appreciably change the shape of the coverage curve, there appears to be an advantage to splitting the test into segments which are applied at different times. It is shown that the expected time to error detection and the probability of an undetected double error can be reduced. The amount of reduction is dependent on the shape of the fault coverage curve. It is conjectured that such a reduction can be obtained for VLSI networks.
    Keywords: NUMERICAL ANALYSIS
    Type: NASA-CR-173188 , NAS 1.26:173188
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2019-06-28
    Description: A complete modeling of faults at gate level for a fault tolerant computer is both infeasible and uneconomical. Functional fault modeling is an approach where units are characterized at an intermediate level and then combined to determine fault behavior. The applicability of functional fault modeling to the FTMP is studied. Using this model a forecast of error latency is made for some functional blocks. This approach is useful in representing larger sections of the hardware and aids in uncovering system level deficiencies.
    Keywords: NUMERICAL ANALYSIS
    Type: NASA-CR-173207 , NAS 1.26:173207
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...