ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

Language
Number of Hits per Page
Default Sort Criterion
Default Sort Ordering
Size of Search History
Default Email Address
Default Export Format
Default Export Encoding
Facet list arrangement
Maximum number of values per filter
Auto Completion
Topics (search only within journals and journal articles that belong to one or more of the selected topics)
Feed Format
Maximum Number of Items per Feed
feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • Key words granular material
Collection
Keywords
Publisher
Years
  • 1
    Electronic Resource
    Electronic Resource
    Springer
    Archive of applied mechanics 69 (1999), S. 181-203 
    ISSN: 1432-0681
    Keywords: Key words granular material ; generalized Hertz contact ; elastic friction ; nonlinear elasticity
    Source: Springer Online Journal Archives 1860-2000
    Topics: Mechanical Engineering, Materials Science, Production Engineering, Mining and Metallurgy, Traffic Engineering, Precision Mechanics
    Notes: Summary Mechanical behavior of dense packing spheres with small irregularities is investigated in this paper. A generalization of the hertzian contact model for surfaces of the form x k yields a normal contact force F n , which is proportional to ζ1+1/ k , with the normal displacement ζ. For oblique forces, the frictional force can be calculated, [10]. Different load cases are explained in detail. It is shown that the stress-strain curve during initial loading of the packing is identical with the force-displacement relation at the contact point, using an appropriate constant. The results for uniaxial loading, unloading and reloading are illustrated. As experimentally observed, the axial pressure in unloading is smaller than during loading, while the lateral pressure increases. The stress-strain relation is compared with well-known empirical relations of rock and soil mechanics, and the wave velocity for spherical irregularities agrees with earlier geomechanical theories for random packing of smooth spheres.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...