ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

Language
Number of Hits per Page
Default Sort Criterion
Default Sort Ordering
Size of Search History
Default Email Address
Default Export Format
Default Export Encoding
Facet list arrangement
Maximum number of values per filter
Auto Completion
Topics (search only within journals and journal articles that belong to one or more of the selected topics)
Feed Format
Maximum Number of Items per Feed
feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Publication Date: 2019-07-19
    Description: We present two new products from near-infrared GOSAT observations: lower tropospheric (LMT, from 0-2.5 km) and upper tropospheric/stratospheric (U, above 2.5 km) carbon dioxide partial columns. We compare these new products to aircraft profiles and remote surface flask measurements and find that the seasonal and year-to-year variations in the new partial columns significantly improve over the ACOS-GOSAT initial guess/a priori, with distinct patterns in the LMT and U seasonal cycles which match validation data. For land monthly averages, we find errors of 1.9, 0.7, and 0.8 ppm for retrieved GOSAT LMT, U, and XCO2; for ocean monthly averages, we find errors of 0.7, 0.5, and 0.5 ppm for retrieved GOSAT LMT, U, and XCO2. In the southern hemisphere biomass burning season, the new partial columns show similar patterns to MODIS fire maps and MOPITT multispectral CO for both vertical levels, despite a flat ACOS-GOSAT prior, and CO/CO2 emission factor consistent with published values. The difference of LMT and U, useful for evaluation of model transport error, has also been validated with monthly average error of 0.8 (1.4) ppm for ocean (land). The new LMT partial column is more locally influenced than the U partial column, meaning that local fluxes can now be separated from CO2 transported from far away.
    Keywords: Earth Resources and Remote Sensing
    Type: ARC-E-DAA-TN37969 , AGU Fall Meeting; Dec 12, 2016 - Dec 16, 2016; San Francisco, CA; United States
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2019-07-13
    Description: No abstract available
    Keywords: Earth Resources and Remote Sensing
    Type: International Radiation Symposium 2012; Aug 06, 2012 - Aug 10, 2012; Berlin; Germany
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    facet.materialart.
    Unknown
    In:  Other Sources
    Publication Date: 2019-07-13
    Description: No abstract available
    Keywords: Earth Resources and Remote Sensing
    Type: OCO-2/ACOS L2 Alogrithm Meeting; Feb 14, 2012 - Feb 15, 2012; Pasadena, CA; United States
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
    Publication Date: 2019-07-12
    Description: January 2009 saw the successful launch of the first space-based mission specifically designed for measuring greenhouse gases, the Japanese Greenhouse gases Observing SATellite (GOSAT). We present global land maps (Level 3 data) of column-averaged CO2 concentrations (X(sub CO2)) derived using observations from the GOSAT ACOS retrieval algorithm, for July through December 2009. The applied geostatistical mapping approach makes it possible to generate maps at high spatial and temporal resolutions that include uncertainty measures and that are derived directly from the Level 2 observations, without invoking an atmospheric transport model or estimates of CO2 uptake and emissions. As such, they are particularly well suited for comparison studies. Results show that the Level 3 maps for July to December 2009 on a lO x 1.250 grid, at six-day resolution capture much of the synoptic scale and regional variability of X(sub CO2), in addition to its overall seasonality. The uncertainty estimates, which reflect local data coverage, X(sub CO2) variability, and retrieval errors, indicate that the Southern latitudes are relatively well-constrained, while the Sahara Desert and the high Northern latitudes are weakly-constrained. A probabilistic comparison to the PCTM/GEOS-5/CASA-GFED model reveals that the most statistically significant discrepancies occur in South America in July and August, and central Asia in September to December. While still preliminary, these results illustrate the usefulness of a high spatiotemporal resolution, data-driven Level 3 data product for direct interpretation and comparison of satellite observations of highly dynamic parameters such as atmospheric CO2.
    Keywords: Earth Resources and Remote Sensing
    Type: GSFC.JA.01101.2012
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 5
    Publication Date: 2020-01-03
    Description: The Orbiting Carbon Observatory-2 and Orbiting Carbon Observatory-3, launched in 2015 and 2019, respectively, are intended to collect and deliver high-resolution observations of CO2 with unprecedented space and time coverage. Observations of CO2 from these remote-sensing missions (also known as XCO2, or column-based average, dry air mole fraction of CO2) are then used by the global carbon cycle community to answer a wide range of science questions, from the distribution and quantification of global and regional CO2 source-sink patterns to quantification of anthropogenic sources at urban scales. Even though we have had the OCO-2 mission flying for a few years now, the retrieval algorithms are continuously evolving and improving to deliver XCO2 retrievals with very high precision and high accuracy (or low biases). In this presentation, we will discuss a simple yet effective quantitative framework that has been developed by the OCO-2 flux team to evaluate the information content of these XCO2 retrievals as soon as they are released, i.e., with lower latency than full-scale flux inversions. This framework serves as a precursor to advanced inverse modeling frameworks and is intended to provide an early but accurate assessment of the signal present in the satellite retrievals, the robustness of that signal, and the ability of these retrievals to resolve patterns in CO2 surface fluxes that cannot be resolved by our current network of surface sites. Specific results will tackle a tiered set of questions that are being addressed using this framework: (a) what are the distribution of retrievals in the different modes of operation and how do they vary in space and time? (b) what is the information that is being given to the inverse modeling frameworks from the space-based data, information above and beyond what is provided by the in-situ data? and (c) how do these factors influence our choices for doing flux inversions with the satellite retrievals? While the primary focus of the results will be on application of this technique to mature OCO-2 retrievals, we will show early results for a couple of months of OCO-3 retrievals. For the time-period that the retrievals from the two missions overlap, we will highlight how this framework allows us to effortlessly put the information from OCO-3 and OCO-2 on an equal footing, thus enabling easy comparison between the two pioneering missions.
    Keywords: Earth Resources and Remote Sensing
    Type: GSFC-E-DAA-TN76547 , AGU Fall Meeting; Dec 09, 2019 - Dec 13, 2019; San Francisco, CA; United States
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 6
    Publication Date: 2019-07-13
    Description: Spatially diverse trends in population growth, climate change, industrialization, urbanization and economic development are expected to change future food supply and demand. These changes may affect the suitability of land for food production, implying elevated risks especially for resource constrained, food-importing countries. We present the evolution of biophysical redundancy for agricultural production at country level, from 1992 to 2012. Biophysical redundancy, defined as unused biotic and abiotic environmental resources, is represented by the potential food production of 'spare land', available water resources (i.e., not already used for human activities), as well as production increases through yield gap closure on cultivated areas and potential agricultural areas. In 2012, the biophysical redundancy of 75 (48) countries, mainly in North Africa, Western Europe, the Middle East and Asia, was insufficient to produce the caloric nutritional needs for at least 50% (25%) of their population during a year. Biophysical redundancy has decreased in the last two decades in 102 out of 155 countries, 11 of these went from high to limited redundancy, and nine of these from limited to very low redundancy. Although the variability of the drivers of change across different countries is high, improvements in yield and population growth have a clear impact on the decreases of redundancy towards the very low redundancy category. We took a more detailed look at countries classified as 'Low Income Economies (LIEs)' since they are particularly vulnerable to domestic or external food supply changes, due to their limited capacity to offset for food supply decreases with higher purchasing power on the international market. Currently, nine LIEs have limited or very low biophysical redundancy. Many of these showed a decrease in redundancy over the last two decades, which is not always linked with improvements in per capita food availability.
    Keywords: Earth Resources and Remote Sensing
    Type: GSFC-E-DAA-TN32452 , Environmental Research Letters; 11; 5; 0550008
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 7
    Publication Date: 2019-07-19
    Description: Consistent validation of satellite CO2 estimates is a prerequisite for using multiple satellite CO2measurements for joint flux inversion and establishing a long-term atmospheric CO2 data record. Wevalidate recent satellite observation of OCO-2 v7 and ACOS-GOSAT v7.3 using similar analysis as previouswork (Kulawik et al. (2016) and Frankenberg et al. (2106)) through comparisons to the HIAPER Pole-to-Pole Observations (HIPPO) and the Total Carbon Column Observing Network (TCCON) to estimate biasesand errors affecting the understanding of carbon cycle science. CarbonTracker RT is also compared tothe validation data, and additionally used to evaluate the mismatch between the HIPPO observationtimeframe and the OCO-2 record, which are offset by 3-7 years. Some key metrics that are validatedinclude the seasonal cycle phase and amplitude, latitudinal gradient by season, regional biases, anderrors with respect to averaging.
    Keywords: Earth Resources and Remote Sensing
    Type: ARC-E-DAA-TN42403 , International Workshop on Greenhouse Gas Measurements from Space (IWGGMS); Jun 06, 2017 - Jun 08, 2017; Helsinki; Finland
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...