ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

Language
Number of Hits per Page
Default Sort Criterion
Default Sort Ordering
Size of Search History
Default Email Address
Default Export Format
Default Export Encoding
Facet list arrangement
Maximum number of values per filter
Auto Completion
Topics (search only within journals and journal articles that belong to one or more of the selected topics)
Feed Format
Maximum Number of Items per Feed
feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    ISSN: 1432-1939
    Keywords: Clonal integration ; Compensatory growth ; Fertilizer application ; Root removal ; Solidago canadensis
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology
    Notes: Summary Compensatory growth in response to simulated belowground herbivory was studied in the old-field clonal perennialSolidago canadensis. We grew rootpruned plants and plants with intact root systems in soil with or without fertilizer. For individual current shoots (aerial shoot with rhizome and roots) and for whole clones the following predictions were tested: a) root removal is compensated by increased root growth, b) fertilizer application leads to increased allocation to aboveground plant organs and increased leaf turnover, c) effects of fertilizer application are reduced in rootpruned plants. When most roots (90%) were removed current shoots quickly restored equilibrium between above-and belowground parts by compensatory belowground growth whereas the whole clone responded with reduced aboveground growth. This suggests that parts of a clone which are shared by actively growing shoots act as a buffer that can be used as source of material for compensatory growth in response to herbivory. Current shoots increased aboveground mass and whole clones reduced belowground mass in response to fertilizer application, both leading to increased allocation to aboverground parts. Also with fertilizer application both root-pruned and not root-pruned plants increased leaf and shoot turnover. Unfertilized plants, whether rootpruned or not, showed practically no aboveground growth and very little leaf and shoot turnover. Effects of root removal were as severe or more severe under conditions of high as under conditions of low nutrients, suggesting that negative effects of belowground herbivory are not ameliorated by abundant nutrients. Root removal may negate some effects of fertilizer application on the growth of current shoots and whole clones.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    ISSN: 1432-1939
    Keywords: Allocation ; Compensatory growth ; Defoliation ; Reproductive effort ; Seed quality
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology
    Notes: Summary We tested the prediction that plants grown in elevated CO2 environments are better able to compensate for biomass lost to herbivory than plants grown in ambient CO2 environments. The herbaceous perennial Plantago lanceolata (Plantaginaceae) was grown in either near ambient (380 ppm) or enriched (700 ppm) CO2 atmospheres, and then after 4 weeks, plants experienced either 1) no defoliation; 2) every fourth leaf removed by cutting; or 3) every other leaf removed by cutting. Plants were harvested at week 13 (9 weeks after simulated herbivory treatments). Vegetative and reproductive weights were compared, and seeds were counted, weighed, and germinated to assess viability. Plants grown in enriched CO2 environments had significantly greater shoot weights, leaf areas, and root weights, yet had significantly lower reproductive weights (i.e. stalks + spikes + seeds) and produced fewer seeds, than plants grown in ambient CO2 environments. Relative biomass allocation patterns further illustrated differences in plants grown in ambient CO2 environments. Relative biomass allocation patterns further illustrated differences in plant responses to enriched CO2 atmospheres: enriched CO2-grown plants only allocated 10% of their carbon resources to reproduction whereas ambient CO2-grown plants allocated over 20%. Effects of simulated herbivory on plant performance were much less dramatic than those induced by enriched CO2 atmospheres. Leaf area removal did not reduce shoot weights or reproductive weights of plants in either CO2 treatment relative to control plants. However, plants from both CO2 treatments experienced reductions in root weights with leaf area removal, indicating that plants compensated for lost above-ground tissues, and maintained comparable levels of reproductive output and seed viability, at the expense of root growth.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    Electronic Resource
    Electronic Resource
    Springer
    Oecologia 78 (1989), S. 508-512 
    ISSN: 1432-1939
    Keywords: Plasticity ; Growth rate ; Photosynthesis ; Abutilon
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology
    Notes: Summary We present a method for quantifying the growth advantage, if any, that results from the plasticity of plant traits in response to growth in high vs. low resource levels. The method, which uses two phenotypes and two resource levels, quantifies the average advantage that a phenotype has, in its own set of conditions, over the other phenotype. The method is applied to the growth of two phenotypes of Abutilon theophrasti, induced by high and low light intensity, in response to two levels of incident light intensity. We calculated the growth advantage first using relative growth rate, and second using whole-plant photosynthetic assimilation rate, as the response variable. Then we used the photosynthetic responses to changes in light intensity to calculate changes in growth rates of each phenotype when exposed to a change in light conditions. These three quantifications of growth advantage broadly agree with one another. Despite the great plasticity of its traits induced by growth in high vs. low light intensity, whole-plant plasticity did not allow Abutilon theophrasti to exhibit a significant growth advantage under these conditions. Indeed, the relative growth rate of the low light phenotype greatly exceeded that of the high light phenotype in high incident light conditions. This may have resulted from the higher leaf area ratio of the low light phenotype. Furthermore, the high light phenotype had significantly greater transpiration rate in both light conditions. For these reasons we suggest that light-induced plasticity of traits in Abutilon theophrasti may confer advantage in response to the variation in vapor pressure deficit that is associated with variation in light intensity. Light-induced plasticity may also be advantageous because under high incident light conditions the high-light phenotype has greater reproductive allocation than the low-light phenotype.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
    Electronic Resource
    Electronic Resource
    Springer
    Oecologia 87 (1991), S. 377-387 
    ISSN: 1432-1939
    Keywords: Photosynthetic acclimation/plasticity ; Sun/shade responses ; Tropical trees/seedlings
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology
    Notes: Summary We evaluated both the photosynthetic plasticity and acclimation to light of seedlings of five co-occurring tropical tree species in the Moraceae,Cecropia obtusifolia, Ficus insipida, Poulsenia armata, Brosimum alicastrum, andPseudolmedia oxyphyllaria. Distinct differences in the species' abilities to respond to increasing irradiance correlated with their known habitat breadths and successional status. The early successinalsCecropia andFicus exhibited the highest photosynthetic rates and conductance values in high light. There was a several-fold difference in assimilation across light regimes, consistent with a high physiological plasticity. When individuals grown at low light were transferred to higher irradiances, seedlings of bothCecropia andFicus produced leaves which photosynthesized at rates as high or higher than those of plants continuously grown in high light, indicating a high photosynthetic acclimation potential. In contrast, the late successionals were characterized by both a more restricted physiological plasticity and acclimation potential. Higher light levels resulted in only moderate increases in assimilation among the late successionals, and onlyBrosimum acclimated fully to increased irradiances. NeitherPoulsenia norPseudolmedia increased appreciably their photosynthetic rates when transferred to high light. This suggests that acclimation potential cannot always be inferred from plasticity responses, and calls for a reevaluation of arguments developed solely from plasticity studies. Finally, differences between the early and late successional species in the allocation of nitrogen into RuBP carboxylase and thylakoid nitrogen pools or non-photosynthetic compounds are suggested by the distinct relationships between maximum photosynthetic capacity and nitrogen content.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 5
    ISSN: 1432-1939
    Keywords: Growth analysis ; Competition ; C3−C4-plants ; CO2 elevation
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology
    Notes: Summary Detailed growth analysis in conjunction with information on leaf display and nitrogen uptake was used to interpret competition between Abutilon theophrasti, a C3 annual, and Amaranthus retroflexus, a C4 annual, under ambient (350 μl l-1) and two levels of elevated (500 and 700 μl l-1) CO2. Plants were grown both individually and in competition with each other. Competition caused a reduction in growth in both species, but for different reasons. In Abutilon, decreases in leaf area ratio (LAR) were responsible, whereas decreased unit leaf rate (ULR) was involved in the case of Amaranthus. Mean canopy height was lower in Amaranthus than Abutilon which may explain the low ULR of Amaranthus in competition. The decrease in LAR of Abutilon was associated with an increase in root/shoot ratio implying that Abutilon was limited by competition for below ground resources. The root/shoot ratio of Amaranthus actually decreased with competition, and Amaranthus had a much higher rate of nitrogen uptake per unit of root than did Abutilon. These latter results suggest that Amaranthus was better able to compete for below ground resources than Abutilon. Although the growth of both species was reduced by competition, generally speaking, the growth of Amaranthus was reduced to a greater extent than that of Abutilon. Regression analysis suggests that the success of Abutilon in competition was due to its larger starting capital (seed size) which gave it an early advantage over Amaranthus. Elevated CO2 had a positive effect upon biomass in Amaranthus, and to a lesser extent, Abutilon. These effects were limited to the early part of the experiment in the case of the individually grown plants, however. Only Amaranthus exhibited a significant increase in relative growth rate (RGR). In spite of the transitory effect of CO2 upon size in individually grown plants, level of CO2 did effect final biomass of competitively grown plants. Abutilon grown in competition with Amaranthus had a greater final biomass than Amaranthus at ambient CO2 levels, but this difference disappeared to a large extent at elevated CO2. The high RGR of Amaranthus at elevated CO2 levels allowed it to overcome the difference in initial size between the two species.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 6
    Electronic Resource
    Electronic Resource
    Springer
    Oecologia 113 (1997), S. 115-125 
    ISSN: 1432-1939
    Keywords: Key wordsBetula ; CO2 ; Mycorrhizal fungi ; Nitrogen ; Pool dilution
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology
    Notes: Abstract The response of temperate forest ecosystems to elevated atmospheric CO2 concentrations is important because these ecosystems represent a significant component of the global carbon cycle. Two important but not well understood processes which elevated CO2 may substantially alter in these systems are regeneration and nitrogen cycling. If elevated CO2 leads to changes in species composition in regenerating forest communities then the structure and function of these ecosystems may be affected. In most temperate forests, nitrogen appears to be a limiting nutrient. If elevated CO2 leads to reductions in nitrogen cycling through increased sequestration of nitrogen in plant biomass or reductions in mineralization rates, long-term forest productivity may be constrained. To study these processes, we established mesocosms of regenerating forest communities in controlled environments maintained at either ambient (375 ppm) or elevated (700 ppm) CO2 concentrations. Mesocosms were constructed from intact monoliths of organic forest soil. We maintained these mesocosms for 2 years without any external inputs of nitrogen and allowed the plants naturally present as seeds and rhizomes to regenerate. We used 15N pool dilution techniques to quantify nitrogen fluxes within the mesocosms at the end of the 2 years. Elevated atmospheric CO2 concentration significantly affected a number of plant and soil processes in the experimental regenerating forest mesocosms. These changes included increases in total plant biomass production, plant C/N ratios, ectomycorrhizal colonization of tree fine roots, changes in tree fine root architecture, and decreases in plant NH4 + uptake rates, gross NH4 + mineralization rates, and gross NH4 + consumption rates. In addition, there was a shift in the relative biomass contribution of the two dominant regenerating tree species; the proportion of total biomass contributed by white birch (Betula papyrifera) decreased and the proportion of total biomass contributed by yellow birch (B. alleghaniensis) increased. However, elevated CO2 had no significant effect on the total amount of nitrogen in plant and soil microbial biomass. In this study we observed a suite of effects due to elevated CO2, some of which could lead to increases in potential long term growth responses to elevated CO2, other to decreases. The reduced plant NH4 + uptake rates we observed are consistent with reduced NH4 + availability due to reduced gross mineralization rates. Reduced NH4 + mineralization rates are consistent with the increases in C/N ratios we observed for leaf and fine root material. Together, these data suggest the positive increases in plant root architectural parameters and mycorrhizal colonization may not be as important as the potential negative effects of reduced nitrogen availability through decreased decomposition rates in a future atmosphere with elevated CO2.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 7
    Electronic Resource
    Electronic Resource
    Springer
    Oecologia 23 (1976), S. 63-74 
    ISSN: 1432-1939
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology
    Notes: Summary Ulmus alata and Diospyros virginiana are components of the shrubearly tree communities of old-field succession in several areas in the deciduous forests of eastern North America. In these habitats, the plants experience high insolation, high temperatures, and low soil moisture during the summer. They exhibit pronounced daily changes in water potential and usually develop more negative water potentials as the season progresses. The species light saturate at ∼1,150 μE m-2 sec-1 with photosynthetic rates of 15 mg CO2 dm-2 h-1 for U. alata and 17 mg CO2 dm-2 h-1 for D. virginiana. The optimum temperatures for photosynthesis are ∼25°C. Ulmus alata maintains maximum photosynthesis to water potentials of-14 bars and recovers from-20 bars to ∼60% of maximum photosynthesis within 10 hrs after watering. When they are deprived of water, twigs of D. virginiana exhibit faster decline in photosynthesis and leaf conductance than twigs of U. alata. The two species have somewhat different response to the environmental of high insolation and low water supply. Unlike Ulmus, Diospyros virginiana has some adaptations which may explain the persistence of a few individuals in mature forests.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 8
    Electronic Resource
    Electronic Resource
    Springer
    Oecologia 68 (1986), S. 459-465 
    ISSN: 1432-1939
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology
    Notes: Summary We examined the extent of ovule abortion and the within-fruit pattern of abortion inCassia fasciculata, an annual legume, and tested the hypothesis that abortion can result from competition for limited maternal resources among developing fruits and seeds. In a natural population at Mayview, IL, 53.4% of ovules in mature fruits matured as seeds; 43.4% showed some development but aborted, and 3.1% showed no development over virgin ovules. In a greenhouse experiment in which treatments were applied after most fruits were initiated, nutrient addition and partial root removel had no effect on abortion, but drought reduced the proportion of ovules maturing to 75% of the control mean. A fruit thinning experiment was conducted in which the number of fruits initiated on certain plants was limited. Control plants had more ovule abortion than fruit-thinned plants, suggesting that abortion resulted from competition for limited maternal resources. A “position effect” was observed in both field and greenhouse populations; ovules toward the fruit base (pedicellar end) had higher frequencies of abortion than those at the distal end. Thus, ovule abortion, like fruit abortion in this species, is non-random. Indivisuals regulate fecundity at both the whole fruit and individual seed levels.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 9
    Electronic Resource
    Electronic Resource
    Springer
    Oecologia 109 (1997), S. 507-515 
    ISSN: 1432-1939
    Keywords: Key words Canopy access ; Light-saturated canopy photosynthesis ; Pmax ; Photosynthesis-nitrogen relationship ; Variance partitioning
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology
    Notes: Abstract  Within the same forest, photosynthesis can vary greatly among species and within an individual tree. Quantifying the magnitude of variation in leaf-level photosynthesis in a forest canopy will improve our understanding of and ability to model forest carbon cycling. This information requires extensive sampling of photosynthesis in the canopy. We used a 22-m-tall, four-wheel-drive aerial lift to reach five to ten leaves from the tops of numerous individuals of several species of temperate deciduous trees in central Massachusetts. The goals of this study were to measure light-saturated photosynthesis in co-occurring canopy tree species under field conditions, and to identify sampling schemes appropriate for canopy tree studies with challenging logistics. Photosynthesis differed significantly among species. Even though all leaves measured were canopy-top, sun-acclimated foliage, the more shade-tolerant species tended to have lower light-saturated photosynthetic rates (P max) than the shade-intolerant species. Likewise, leaf mass per area (LMA) and nitrogen content (N) varied significantly between species. With only one exception, the shade-tolerant species tended to have lower nitrogen content on an area basis than the intolerant species, although the LMA did not differ systematically between these ecological types. Light-saturated P max rates and nitrogen content, both calculated on either an area or a mass basis, and the leaf mass to area ratio, significantly differed not only among species, but also among individuals within species (P〈0.0001 for both). Differences among species accounted for a greater proportion of variance in the P max rates and the nitrogen content than the differences among individuals within a species (58.5–78.8% of the total variance for the measured parameters was attributed to species-level differences versus 5.5–17.4% of the variance was attributed to differences between individual trees of a given species). Furthermore, more variation is accounted for by differences among leaves in a single individual tree, than by differences among individual trees of a given species (10.7–30.4% versus 5.5–17.4%). This result allows us to compare species-level photosynthesis, even if the sample size of the number of trees is low. This is important because studies of canopy-level photosynthesis are often limited by the difficulty of canopy access. As an alternative to direct canopy access measurements of photosynthesis, it would be useful to find an ”easy-to-measure” proxy for light-saturated photosynthetic rates to facilitate modeling forest carbon cycling. Across all species in this study, the strongest correlation was between nitrogen content expressed on an area basis (mmol m–2, N area) and light-saturated P max rate (μmol m–2 s–1, P maxarea) (r 2=0.511). However, within a given species, leaf nitrogen was not tightly correlated with photosynthesis. Our sampling design minimized intra-specific leaf-level variation (i.e., leaves were taken only from the top of the canopy and at only one point in the season). This implies that easy-to-measure trends in nitrogen content of leaves may be used to predict the species-specific light-saturated P max rates.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 10
    ISSN: 1432-1939
    Keywords: Allocation ; Betula ; Biomass ; Nutrients ; Root length dynamics
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology
    Notes: Abstract Spatial and temporal dynamics of biomass allocation within and between organs were investigated in seedlings of two birch species of contrasting successional status. Seedlings of Betula alleghaniensis Britt (yellow birch) and B. populifolia Marsh (gray birch) were grown for 6 weeks at two nutrient levels in rectangular plexiglass containers to allow non-destructive estimates of root growth, production and loss. Leaf area and production were simultaneously monitored. Yellow birch responded more to nutrient level than gray birch in terms of total biomass, shoot biomass, leaf area and root length. Yellow birch also flexibly altered within-organ allocation (specific leaf area, specific root length and specific soil amount). In contrast, gray birch altered between-organ allocation patterns (root length:leaf area and soil amount:leaf area ratios) more than yellow birch in response to nutrient level. Yellow birch showed greater overall root density changes within a very compact root system, while gray birch showed localized root density changes as concentric bands of new root production spread through the soil. Species differ critically in their responses of standing root length and root production and loss rates to nutrient supply. Early successional species such as gray birch are hypothesized to exhibit higher plasticity in varied environments than later successional species such as yellow birch. Our results suggest that different patterns of allocation, within and between plant organs, do not necessarily follow the same trajectories. To characterize thoroughly the nature of functional flexibility through ontogeny, within- and between-organ patterns of allocation must be accounted for.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...