ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

Language
Number of Hits per Page
Default Sort Criterion
Default Sort Ordering
Size of Search History
Default Email Address
Default Export Format
Default Export Encoding
Facet list arrangement
Maximum number of values per filter
Auto Completion
Topics (search only within journals and journal articles that belong to one or more of the selected topics)
Feed Format
Maximum Number of Items per Feed
feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Publication Date: 2015-12-02
    Description: The Precordillera terrane in northwestern Argentina is interpreted to be an exotic (Laurentian) continental fragment that was accreted to western Gondwana during the Ordovician. One prominent manifestation of the subduction and collision process is a Middle–Upper Ordovician clastic wedge, which overlies a passive-margin carbonate-platform succession in the Precordillera. U/Pb ages of detrital zircons from sandstones within the clastic wedge, as well as zircons from clasts within conglomerates, provide documentation for the composition of the sediment provenance. The ages of detrital zircons are consistent vertically through the succession, as well as laterally along and across strike of the Precordillera, indicating a single, persistent sediment source throughout deposition of the clastic wedge. The dominant mode (~1350–1000 Ma) of the detrital-zircon ages corresponds to the ages of basement rocks in the Western Sierras Pampeanas along the eastern side of the Precordillera. A secondary mode (1500–1350 Ma) corresponds in age to the Granite-Rhyolite province of Laurentia, an age range which is not known in ages of basement rocks of the Western Sierras Pampeanas; however, detritus from Granite-Rhyolite-age rocks in the basement of the Precordillera was available through recycling of synrift and passive-margin cover strata. Igneous clasts in the conglomerates have ages (647–614 Ma) that correspond to the ages of minor synrift igneous rocks in the nearby basement massifs; the same ages are represented in a minor mode (~750–570 Ma) of detrital-zircon ages. A quartzite clast in a conglomerate, as well as parts of the population of detrital zircons, indicates the importance of a source in the metasedimentary cover of the leading edge of the Precordillera. The Famatina continental-margin magmatic arc reflects pre-collision subduction of Precordillera lithosphere beneath the western Gondwana margin; however, no detrital zircons have ages that correspond to Famatina arc magmatism, indicating that sedimentary detritus from the arc may have been trapped in a forearc basin and did not reach the foreland. The indicators of sedimentary provenance for the foreland deposits are consistent with subduction of the Precordillera beneath western Gondwana, imbrication of basement rocks from either the Precordillera or Gondwana into an accretionary complex, and recycling of deformed Precordillera cover rocks.
    Electronic ISSN: 1553-040X
    Topics: Geosciences
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2018
    Description: 〈span〉〈div〉Abstract〈/div〉Deep-sea carbonate represents Earth’s largest carbon sink and one of the least-known components of the long-term carbon cycle that is intimately linked to climate. By coupling the deep-sea carbonate sedimentation history to a global tectonic model, we quantify this component within the framework of a continuously evolving seafloor. A long-term increase in marine carbonate carbon flux since the mid-Cretaceous is dominated by a post-50 Ma doubling of carbonate accumulation to ∼310 Mt C/yr at present-day. This increase was caused largely by the immense growth in deep-sea carbonate carbon storage, post-dating the end of the Early Eocene Climate Optimum. We suggest that a combination of a retreat of epicontinental seas, underpinned by long-term deepening of the seafloor, the inception of major Himalayan river systems, and the weathering of the Deccan Traps drove enhanced delivery of Ca〈sup〉2+〈/sup〉 and HCO〈sub〉3〈/sub〉〈sup〉–〈/sup〉 into the oceans and atmospheric CO〈sub〉2〈/sub〉 drawdown in the 15 m.y. prior to the onset of glaciation at ca. 35 Ma. Relatively stagnant mid-ocean ridge, rift- and subduction-related degassing during this period support our contention that continental silicate weathering, rather than a major decrease in CO〈sub〉2〈/sub〉 degassing, may have triggered an increase in marine carbonate accumulation and long-term Eocene global cooling. Our results provide new constraints for global carbon cycle models, and may improve our understanding of carbonate subduction-related metamorphism, mineralization and isotopic signatures of degassing.〈/span〉
    Print ISSN: 0091-7613
    Electronic ISSN: 1943-2682
    Topics: Geosciences
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2018
    Description: 〈span〉Deep-sea carbonate represents Earth’s largest carbon sink and one of the least-known components of the long-term carbon cycle that is intimately linked to climate. By coupling the deep-sea carbonate sedimentation history to a global tectonic model, we quantify this component within the framework of a continuously evolving seafloor. A long-term increase in marine carbonate carbon flux since the mid-Cretaceous is dominated by a post-50 Ma doubling of carbonate accumulation to ~310 Mt C/yr at present-day. This increase was caused largely by the immense growth in deep-sea carbonate carbon storage, post-dating the end of the Early Eocene Climate Optimum. We suggest that a combination of a retreat of epicontinental seas, underpinned by long-term deepening of the seafloor, the inception of major Himalayan river systems, and the weathering of the Deccan Traps drove enhanced delivery of Ca〈sup〉2+〈/sup〉 and HCO〈sub〉3〈/sub〉〈sup〉–〈/sup〉 into the oceans and atmospheric CO〈sub〉2〈/sub〉 drawdown in the 15 m.y. prior to the onset of glaciation at ca. 35 Ma. Relatively stagnant mid-ocean ridge, rift- and subduction-related degassing during this period support our contention that continental silicate weathering, rather than a major decrease in CO〈sub〉2〈/sub〉 degassing, may have triggered an increase in marine carbonate accumulation and long-term Eocene global cooling. Our results provide new constraints for global carbon cycle models, and may improve our understanding of carbonate subduction-related metamorphism, mineralization and isotopic signatures of degassing.〈/span〉
    Print ISSN: 0091-7613
    Electronic ISSN: 1943-2682
    Topics: Geosciences
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...