ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

Language
Number of Hits per Page
Default Sort Criterion
Default Sort Ordering
Size of Search History
Default Email Address
Default Export Format
Default Export Encoding
Facet list arrangement
Maximum number of values per filter
Auto Completion
Topics (search only within journals and journal articles that belong to one or more of the selected topics)
Feed Format
Maximum Number of Items per Feed
feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • Blackwell Science Ltd  (1)
  • 1
    ISSN: 1365-2958
    Source: Blackwell Publishing Journal Backfiles 1879-2005
    Topics: Biology , Medicine
    Notes: The HPr kinase of Gram-positive bacteria is an ATP-dependent serine protein kinase, which phosphorylates the HPr protein of the bacterial phosphotransferase system (PTS) and is involved in the regulation of carbohydrate metabolism. The hprK gene from Enterococcus faecalis was cloned via polymerase chain reaction (PCR) and sequenced. The deduced amino acid sequence was confirmed by microscale Edman degradation and mass spectrometry combined with collision-induced dissociation of tryptic peptides derived from the HPr kinase of E. faecalis. The gene was overexpressed in Escherichia coli, which does not contain any ATP-dependent HPr kinase or phosphatase activity. The homogeneous recombinant protein exhibits the expected HPr kinase activity as well as a P-Ser-HPr phosphatase activity, which was assumed to be a separate enzyme activity. The bifunctional HPr kinase/phosphatase acts preferentially as a kinase at high ATP levels of 2 mM occurring in glucose-metabolizing Streptococci. At low ATP levels, the enzyme hydrolyses P-Ser-HPr. In addition, high concentrations of phosphate present under starvation conditions inhibit the HPr kinase activity. Thus, a putative function of the enzyme may be to adjust the ratio of HPr and P-Ser-HPr according to the metabolic state of the cell; P-Ser-HPr is involved in carbon catabolite repression and regulates sugar uptake via the phosphotransferase system (PTS). Reinvestigation of the previously described Bacillus subtilis HPr kinase revealed that it also possesses P-Ser-HPr phosphatase activity. However, contrary to the E. faecalis enzyme, ATP alone was not sufficient to switch the phosphatase activity of the B. subtilis enzyme to the kinase activity. A change in activity of the B. subtilis HPr kinase was only observed when fructose-1,6-bisphosphate was also present.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...