ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

Language
Number of Hits per Page
Default Sort Criterion
Default Sort Ordering
Size of Search History
Default Email Address
Default Export Format
Default Export Encoding
Facet list arrangement
Maximum number of values per filter
Auto Completion
Topics (search only within journals and journal articles that belong to one or more of the selected topics)
Feed Format
Maximum Number of Items per Feed
feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Electronic Resource
    Electronic Resource
    College Park, Md. : American Institute of Physics (AIP)
    The Journal of Chemical Physics 114 (2001), S. 3809-3816 
    ISSN: 1089-7690
    Source: AIP Digital Archive
    Topics: Physics , Chemistry and Pharmacology
    Notes: The behavior of tethered polymers on gel/gel adhesion is studied with the single-chain mean-field (SCMF) theory. It is shown that the gel surface structure, the gel/gel adhesion strength, the equilibrium gel/gel distance, and the detailed interface structures can be tailored by specifically designed tethered layers on gel surfaces. The SCMF theory allows to study the effect of various variables of tethered layers, such as the surface coverage, the attraction between polymers and gels, and the composition of block copolymers. These theoretical results provide guidelines for experimental designs of novel gel materials with tethered layers. © 2001 American Institute of Physics.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    ISSN: 1089-7623
    Source: AIP Digital Archive
    Topics: Physics , Electrical Engineering, Measurement and Control Technology
    Notes: We describe a laser heated diamond anvil cell system at the GeoSoilEnviroCARS sector at the Advanced Photon Source. The system can be used for in situ x-ray measurements at simultaneously ultrahigh pressures (to 〉150 GPa) and ultrahigh temperatures (to 〉4000 K). Design goals of the laser heating system include generation of a large heating volume compared to the x-ray beam size, minimization of the sample temperature gradients both radially and axially in the diamond anvil cell, and maximization of heating stability. The system is based on double-sided laser heating technique and consists of two Nd:YLF lasers with one operating in TEM00 mode and the other in TEM01* mode, optics to heat the sample from both sides, and two spectroradiometric systems for temperature measurements on both sides. When combined with an x-ray microbeam (3–10 μm) technique, a temperature variation of less than 50 K can be achieved within an x-ray sampled region for longer than 10 min. The system has been used to obtain in situ structural data and high temperature equations of state on metals, oxides, and silicates to 3500 K and 160 GPa. © 2001 American Institute of Physics.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2015-08-11
    Description: In this study, we developed a new method for in-situ pressure determination in multi-anvil, high-pressure apparatus using an acoustic travel time approach within the framework of acoustoelasticity. The ultrasonic travel times of polycrystalline Al 2 O 3 were calibrated against NaCl pressure scale up to 15 GPa and 900 °C in a Kawai-type double-stage multi-anvil apparatus in conjunction with synchrotron X-radiation, thereby providing a convenient and reliable gauge for pressure determination at ambient and high temperatures. The pressures derived from this new travel time method are in excellent agreement with those from the fixed-point methods. Application of this new pressure gauge in an offline experiment revealed a remarkable agreement of the densities of coesite with those from the previous single crystal compression studies under hydrostatic conditions, thus providing strong validation for the current travel time pressure scale. The travel time approach not only can be used for continuous in-situ pressure determination at room temperature, high temperatures, during compression and decompression, but also bears a unique capability that none of the previous scales can deliver, i.e., simultaneous pressure and temperature determination with a high accuracy (±0.16 GPa in pressure and ±17 °C in temperature). Therefore, the new in-situ Al 2 O 3 pressure gauge is expected to enable new and expanded opportunities for offline laboratory studies of solid and liquid materials under high pressure and high temperature in multi-anvil apparatus.
    Print ISSN: 0021-8979
    Electronic ISSN: 1089-7550
    Topics: Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
    Publication Date: 2016-04-01
    Description: Generally, the phase structure change of Pb(B′ B″)O 3 –PZT solid solutions near a morphotropic phase boundary (MPB) can be originated from composition variations. Here our results show that the excess PbO and the sintering temperature can also result in the ferroelectric phase structure change in the Pb(Ni 1/3 Nb 2/3 )O 3 –Pb(Zr,Ti)O 3 (PNN–PZT)-based ceramics near the MPB. The dielectric, piezoelectric, and ferroelectric properties are dependent on the tetragonal phase content ( TP ) which is closely associated with the excess PbO and the sintering temperature. The temperature dependence of the polarization ( P )–electric field ( E ) hysteresis loops reveals that the tetragonal phase in the PNN–PZT-based ceramics has a lower activation energy ( E a ) for domain wall movement than that of the rhombohedral phase, thus resulting in easier polarization rotation. This is responsible for the phase structure–electrical property relationships in the PNN–PZT-based ceramics, exhibiting the dependence of the tetragonal phase content ( TP ) on the electrical properties.
    Print ISSN: 0021-8979
    Electronic ISSN: 1089-7550
    Topics: Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 5
    Publication Date: 2015-12-29
    Description: In this paper, we study the long time behavior of solutions to a weakly dissipative fractional Korteweg de Vries (KdV) equation on the real line R . The main difficulty lies in that the dissipative term is a nonlocal operator. We overcome this difficulty by the commutator estimates and product estimates associated with fractional Laplacian. The asymptotical compactness of solution semigroup is proved by the tail estimates. Finally, we conclude the existence of ( H 2 ( R ), H 5 ( R )) global attractor of the weakly dissipative fractional KdV equation.
    Print ISSN: 0022-2488
    Electronic ISSN: 1089-7658
    Topics: Mathematics , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 6
    Publication Date: 2016-09-09
    Description: Dual-wavelength laser emission is achieved by using an active/inactive/active sandwich-like structure, which can be conveniently fabricated using spin coating technique. Poly [(9, 9-dioctylfluorenyl-2, 7-diyl)-alt-co-(1, 4-benzo-(2, 1′, 3) -thiadiazole)] and polyvinyl alcohol are employed as the active and the inactive materials, respectively. Two laser wavelengths are simultaneously observed, which are attributed to the difference of the surrounding refractive index of two active waveguides in the sandwich-like structure. Each wavelength is controlled by the respective waveguide structure, meaning that multi-wavelength laser can be designed by stacking the active/inactive layer pair. These results provide more flexibility to design compact laser sources.
    Print ISSN: 0003-6951
    Electronic ISSN: 1077-3118
    Topics: Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 7
    Publication Date: 2015-06-17
    Description: The use of hexagonal boron nitride (h-BN) in microfluidic and nanofluidic applications requires a fundamental understanding of the interaction between water and the h-BN surface. A crucial component of the interaction is the binding energy, which is sensitive to the treatment of electron correlation. In this work, we use state of the art quantum Monte Carlo and quantum chemistry techniques to compute the binding energy. Compared to high-level many-body theory, we found that the second-order Møller-Plesset perturbation theory captures the interaction accurately and can thus be used to develop force field parameters between h-BN and water for use in atomic scale simulations. On the contrary, density functional theory with standard dispersion corrections tends to overestimate the binding energy by approximately 75%.
    Print ISSN: 0021-9606
    Electronic ISSN: 1089-7690
    Topics: Chemistry and Pharmacology , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 8
    Publication Date: 2015-09-22
    Description: Metal-semiconductor Schottky junction devices composed of chemical vapor deposition grown monolayer graphene on p -type silicon substrates are fabricated and characterized. Important diode parameters, such as the Schottky barrier height, ideality factor, and series resistance, are extracted from forward bias current-voltage characteristics using a previously established method modified to take into account the interfacial native oxide layer present at the graphene/silicon junction. It is found that the ideality factor can be substantially increased by the presence of the interfacial oxide layer. Furthermore, low frequency noise of graphene/silicon Schottky junctions under both forward and reverse bias is characterized. The noise is found to be 1/ f dominated and the shot noise contribution is found to be negligible. The dependence of the 1/ f noise on the forward and reverse current is also investigated. Finally, the photoresponse of graphene/silicon Schottky junctions is studied. The devices exhibit a peak responsivity of around 0.13 A/W and an external quantum efficiency higher than 25%. From the photoresponse and noise measurements, the bandwidth is extracted to be ∼1 kHz and the normalized detectivity is calculated to be 1.2 × 10 9  cm Hz 1/2  W −1 . These results provide important insights for the future integration of graphene with silicon device technology.
    Print ISSN: 0021-8979
    Electronic ISSN: 1089-7550
    Topics: Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 9
    Publication Date: 2014-10-11
    Description: An electrochemical cell has been designed for powder X-ray diffraction studies of lithium ion batteries (LIB) and sodium ion batteries (SIB) in operando with high time resolution using a conventional powder X-ray diffractometer. The cell allows for studies of both anode and cathode electrode materials in reflection mode. The cell design closely mimics that of standard battery testing coin cells and allows obtaining powder X-ray diffraction patterns under representative electrochemical conditions. In addition, the cell uses graphite as the X-ray window instead of beryllium, and it is easy to operate and maintain. Test examples on lithium insertion/extraction in two spinel-type LIB electrode materials (Li 4 Ti 5 O 12 anode and LiMn 2 O 4 cathode) are presented as well as first results on sodium extraction from a layered SIB cathode material (Na 0.84 Fe 0.56 Mn 0.44 O 2 ).
    Print ISSN: 0034-6748
    Electronic ISSN: 1089-7623
    Topics: Electrical Engineering, Measurement and Control Technology , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 10
    Publication Date: 2016-04-29
    Description: The study of hexagonal boron nitride (hBN) in microfluidic and nanofluidic applications at the atomic level requires accurate force field parameters to describe the water-hBN interaction. In this work, we begin with benchmark quality first principles quantum Monte Carlo calculations on the interaction energy between water and hBN, which are used to validate random phase approximation (RPA) calculations. We then proceed with RPA to derive force field parameters, which are used to simulate water contact angle on bulk hBN, attaining a value within the experimental uncertainties. This paper demonstrates that end-to-end multiscale modeling, starting at detailed many-body quantum mechanics and ending with macroscopic properties, with the approximations controlled along the way, is feasible for these systems.
    Print ISSN: 0021-9606
    Electronic ISSN: 1089-7690
    Topics: Chemistry and Pharmacology , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...