ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

Language
Number of Hits per Page
Default Sort Criterion
Default Sort Ordering
Size of Search History
Default Email Address
Default Export Format
Default Export Encoding
Facet list arrangement
Maximum number of values per filter
Auto Completion
Topics (search only within journals and journal articles that belong to one or more of the selected topics)
Feed Format
Maximum Number of Items per Feed
feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • Nucleic acid structure, RNA characterisation and manipulation, Computational Methods  (1)
  • Oxford University Press  (1)
  • 2015-2019  (1)
Collection
Publisher
  • Oxford University Press  (1)
Years
  • 2015-2019  (1)
Year
  • 1
    Publication Date: 2016-04-21
    Description: RNA–RNA interactions are fast emerging as a major functional component in many newly discovered non-coding RNAs. Basepairing is believed to be a major contributor to the stability of these intermolecular interactions, much like intramolecular basepairs formed in RNA secondary structure. As such, using algorithms similar to those for predicting RNA secondary structure, computational methods have been recently developed for the prediction of RNA–RNA interactions. We provide the first comprehensive comparison comprising 14 methods that predict general intermolecular basepairs. To evaluate these, we compile an extensive data set of 54 experimentally confirmed fungal snoRNA–rRNA interactions and 102 bacterial sRNA–mRNA interactions. We test the performance accuracy of all methods, evaluating the effects of tool settings, sequence length, and multiple sequence alignment usage and quality. Our results show that—unlike for RNA secondary structure prediction—the overall best performing tools are non-comparative energy-based tools utilizing accessibility information that predict short interactions on this data set. Furthermore, we find that maintaining high accuracy across biologically different data sets and increasing input lengths remains a huge challenge, causing implications for de novo transcriptome-wide searches. Finally, we make our interaction data set publicly available for future development and benchmarking efforts.
    Keywords: Nucleic acid structure, RNA characterisation and manipulation, Computational Methods
    Print ISSN: 0305-1048
    Electronic ISSN: 1362-4962
    Topics: Biology
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...