ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

You have 0 saved results.
Mark results and click the "Add To Watchlist" link in order to add them to this list.
feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Description / Table of Contents: The Himalayan mountain belt, which developed during the India–Asia collision starting about 55 Ma ago, is a dramatically active orogen and it is regarded as the classic collisional orogen. It is characterized by an impressively continuous 2500 km of tectonic units, thrusts and normal faults, as well as large volumes of high-grade metamorphic rocks and granites exposed at the surface. This constitutes an invaluable field laboratory, where amazing crustal sections can be observed directly in very deep gorges. It is possible to unravel the tectonic and metamorphic evolution of litho-units, to observe the mechanisms of exhumation of deep-seated rocks and the propagation of the deformation. Himalayan tectonics has been the target of many studies from numerous international researchers over the years. In the last 15 years there has been an explosion of data and theories from both geological and geophysical perspectives. This book presents the results of integrated multidisciplinary studies, including geology, petrology, magmatism, geochemistry, geochronology and geophysics, of the structures and processes affecting the continental lithosphere. These processes and their spatial and temporal evolution have major consequences on the geometry and kinematics of the India–Eurasia collision zone.
    ISBN: 9781862397033
    Language: English
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Electronic Resource
    Electronic Resource
    Amsterdam : Elsevier
    Earth and Planetary Science Letters 123 (1994), S. 317-329 
    ISSN: 0012-821X
    Source: Elsevier Journal Backfiles on ScienceDirect 1907 - 2002
    Topics: Geosciences , Physics
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    Electronic Resource
    Electronic Resource
    Amsterdam : Elsevier
    Earth and Planetary Science Letters 127 (1994), S. 39-54 
    ISSN: 0012-821X
    Source: Elsevier Journal Backfiles on ScienceDirect 1907 - 2002
    Topics: Geosciences , Physics
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
    Electronic Resource
    Electronic Resource
    Amsterdam : Elsevier
    Earth and Planetary Science Letters 121 (1994), S. 417-433 
    ISSN: 0012-821X
    Source: Elsevier Journal Backfiles on ScienceDirect 1907 - 2002
    Topics: Geosciences , Physics
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 5
    Publication Date: 2010-06-03
    Description: We present a synthesis of recently conducted tectonic, global positioning system (GPS), geomorphological and seismic studies to describe the kinematics of the Zagros mountain belt, with a special focus on the transverse right-lateral strike-slip Kazerun Fault System (KFS). Both the seismicity and present-day deformation (as observed from tectonics, geomorphology and GPS) appear to concentrate near the 1000 m elevation contour, suggesting that basement and shallow deformation are related. This observation supports a thick-skinned model of southwestward propagation of deformation, starting from the Main Zagros Reverse Fault. The KFS distributes right-lateral strike-slip motion of the Main Recent Fault onto several segments located in an en echelon system to the east. We observe a marked difference in the kinematics of the Zagros across the Kazerun Fault System. To the NW, in the North Zagros, present-day deformation is partitioned between localized strike-slip motion on the Main Recent Fault and shortening located on the deformation front. To the SE, in the Central Zagros, strike-slip motion is distributed on several branches of the KFS. The decoupling of the Hormuz Salt layer, restricted to the east of the KFS and favouring the spreading of the sedimentary cover, cannot be the only cause of this distributed mechanism because seismicity (and therefore basement deformation) is associated with all active strike-slip faults, including those to the east of the Kazerun Fault System.
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 6
    Publication Date: 2016-03-23
    Description: Although the Himalayan range is classically presented as cylindrical along strike, segmentation of the range in terms of structure, topography, precipitation, and erosion patterns is becoming widely recognized. The potential climatic or tectonic controls on these lateral variations remain controversial. Thermokinematic models predict that the geometry of the main Himalayan detachment controls the kinematics, exhumation, and topography of the orogen: where the detachment includes a major crustal ramp, the topography shows a steep gradient that focuses orographic precipitation and exhumation, whereas the topography is gentler and exhumation less focused above a flatter detachment. We test this prediction by comparing the patterns of river incision (specific stream power) and long-term exhumation (from apatite fission track thermochronology) in central Nepal, where a major crustal ramp has been imaged by geophysical methods, with new exploratory data from the remote Karnali River transect in western Nepal, where a ramp is predicted to be absent or minor. Our results show that both exhumation rates and river incision capacity are significantly higher and focused on the crustal ramp in central Nepal, whereas they are lower and the pattern is more diffuse in western Nepal. These differences support a model in which lateral variations in topography and exhumation are controlled by variations in the geometry of the detachment, and imply that along-strike climatic variations in the Himalaya respond to tectonics rather than driving it.
    Print ISSN: 0091-7613
    Electronic ISSN: 1943-2682
    Topics: Geosciences
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 7
    Publication Date: 2015-06-10
    Description: Extract Studies of the spatial and temporal evolution of collisional orogens, such as the Himalaya, have been experiencing a revival over the past 15 years with the development of new geochronological, thermochronological and isotopic analytical techniques. These advanced techniques include Raman thermometry, Sr–Nd–Hf and Nd studies, 40 Ar/ 39 Ar and U–Th–Pb zircon dating. This volume, Tectonics of the Himalaya , explores and tests the most recent tectonic models from structural, metamorphic, geochemical, geochronological, geophysical and other perspectives. ... This 250-word extract was created in the absence of an abstract.
    Print ISSN: 0305-8719
    Electronic ISSN: 2041-4927
    Topics: Geosciences
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 8
    Publication Date: 2014-12-03
    Description: Physical and numerical simulations of the development of mountain topography predict that asymmetric distributions of precipitation over a mountain range induce a migration of its drainage divide toward the driest flank in order to equilibrate erosion rates across the divide. Such migration is often inferred from existing asymmetries, but direct evidence for the migration is often lacking. New low-temperature apatite cooling ages from a transect across the northern North Cascades range (Washington, NW USA) and from two elevation profiles in the Skagit River valley record faster denudation on the western, wetter side of the range and lower denudation rates on the lee side of the range. This difference has already been documented further south along another transect across the range; however, in the south, the shift from young cooling ages to older ages occurs across the modern drainage divide. Here, further north, the shift occurs along a range-transverse valley within the Skagit Gorge. It has been proposed that the upper Skagit drainage was once a part of the leeward side of the range but started to drain toward the western side of the range across the Skagit Gorge in Quaternary time. Age-elevation profiles along the former drainage and in the Skagit Gorge restrict the onset of Skagit Gorge incision to the last 2 m.y., in agreement with 4 He/ 3 He data for the gorge floor. Breaching of the range drainage resulted in its displacement 40 km further east into the dry side of the range. In the 2000-m-deep, V-shaped Skagit Gorge, river stream power is still high, suggesting that incision of the gorge is still ongoing. Several other similar events have occurred along the range during the Pleistocene, supporting the proposed hypothesis that the repeated southward incursions of the Cordilleran ice sheet during this period triggered divide breaching and drainage reorganization by overflow of ice-dammed lakes at the front of the growing ice sheet. Since these events systematically rerouted streams toward the wet side of the range and resulted in leeward migration of the divide, we propose that in fact the Cordilleran ice sheet advance essentially catalyzed the adjustment of the mountain chain topography to the current orographic precipitation pattern.
    Print ISSN: 1941-8264
    Electronic ISSN: 1947-4253
    Topics: Geosciences
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 9
    Publication Date: 2012-03-02
    Description: Author(s): T. van der Beek, P. Barthelemy, P. M. Johnson, D. S. Wiersma, and A. Lagendijk We present a study of optical transport properties of powder layers with submicrometer, strongly scattering gallium arsenide (GaAs) particles. Uniform, thin samples with well controlled thicknesses were created through the use of varying grinding times, sedimentation fractionation, annealing, and a ... [Phys. Rev. B 85, 115401] Published Thu Mar 01, 2012
    Keywords: Surface physics, nanoscale physics, low-dimensional systems
    Print ISSN: 1098-0121
    Electronic ISSN: 1095-3795
    Topics: Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 10
    Publication Date: 2014-09-20
    Description: Fast uplift and exhumation of the Himalaya and Tibet and fast subsidence in the foreland basin portray the primary Neogene evolution of the Indian-Eurasian collision zone. We relate these events to the relative northward drift of India over its own slab. Our mantle-flow model derived from seismic tomography shows that dynamic topography over the southward-folded Indian slab explains the modern location of the foreland depocenter. Back in time, our model suggests that the stretched Indian slab detached from the Indian plate during the indentation of the Eurasian plate, and remained stationary underneath the northward-drifting Indian continent. We model the associated southward migration of the dynamic deflection of the topography and show that subsidence has amounted to ~6000 m in the foreland basin since 15 Ma, while the dynamic surface uplift of the Himalaya amounted to ~1000 m during the early Miocene. While competing with other processes, transient dynamic topography may thus explain, to a large extent, both the uplift history of the Himalaya and subsidence of its foreland basin, and should not be ignored.
    Print ISSN: 0091-7613
    Electronic ISSN: 1943-2682
    Topics: Geosciences
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...