ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

You have 0 saved results.
Mark results and click the "Add To Watchlist" link in order to add them to this list.
feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Publication Date: 2022-07-12
    Description: Recent discussions in many scientific disciplines stress the necessity of “FAIR” data. FAIR data, however, does not necessarily include information on data trustworthiness, where trustworthiness comprises reliability, validity and provenience/provenance. This opens up the risk of misinterpreting scientific data, even though all criteria of “FAIR” are fulfilled. Especially applications such as secondary data processing, data blending, and joint interpretation or visualization efforts are affected. This paper intends to start a discussion in the scientific community about how to evaluate, describe, and implement trustworthiness in a standardized data evaluation approach and in its metadata description following the FAIR principles. It discusses exemplarily different assessment tools regarding soil moisture measurements, data processing and visualization and elaborates on which additional (metadata) information is required to increase the trustworthiness of data for secondary usage. Taking into account the perspectives of data collectors, providers and users, the authors identify three aspects of data trustworthiness that promote efficient data sharing: 1) trustworthiness of the measurement 2) trustworthiness of the data processing and 3) trustworthiness of the data integration and visualization. The paper should be seen as the basis for a community discussion on data trustworthiness for a scientifically correct secondary use of the data. We do not have the intention to replace existing procedures and do not claim completeness of reliable tools and approaches described. Our intention is to discuss several important aspects to assess data trustworthiness based on the data life cycle of soil moisture data as an example.
    Repository Name: EPIC Alfred Wegener Institut
    Type: Article , NonPeerReviewed
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2022-02-01
    Description: Abstract
    Description: The River Plume Workflow is part of the Flood Event Explorer (FEE, Eggert et al., 2022), developed at the GFZ German Research Centre for Geosciences in close collaboration with Helmholtz-Zentrum Hereon. It is funded by the Initiative and Networking Fund of the Helmholtz Association through the Digital Earth project (https://www.digitalearth-hgf.de/). The focus of the River Plume Workflow is the impact of riverine flood events on the marine environment. At the end of a flood event chain, an unusual amount of nutrients and pollutants is washed into the North Sea, which can have consequences, such as increased algae blooms. The workflow aims to enable users to detect a river plume in the North Sea and to determine its spatio-temporal extent. Identifying river plume candidates can either happen manually in the visual interface or also through an automatic anomaly detection algorithm, using Gaussian regression. In both cases a combination of observational data, namely FerryBox transects and satellite data, and model data are used. Once a river plume candidate is found, a statistical analysis supplies additional detail on the anomaly and helps to compare the suspected river plume to the surrounding data. Simulated trajectories of particles starting on the FerryBox transect at the time of the original observation and modelled backwards and forwards in time help to verify the origin of the river plume and allow users to follow the anomaly across the North Sea. An interactive map enables users to load additional observational data into the workflow, such as ocean colour satellite maps, and provides them with an overview of the flood impacts and the river plume’s development on its way through the North Sea. In addition, the workflow offers the functionality to assemble satellite-based chlorophyll observations along model trajectories as a time series. They allow scientists to understand processes inside the river plume and to determine the timescales on which these developments happen. For example, chlorophyll degradation rates in the Elbe river plume are currently investigated using these time series. The workflow's added value lies in the ease with which users can combine observational FerryBox data with relevant model data and other datasets of their choice. Furthermore, the workflow allows users to visually explore the combined data and contains methods to find and highlight anomalies. The workflow’s functionalities also enable users to map the spatio-temporal extent of the river plume and investigate the changes in productivity that occur in the plume. All in all, the River Plume Workflow simplifies the investigation and monitoring of flood events and their impacts in marine environments.
    Description: TechnicalInfo
    Description: Copyright 2022 Helmholtz Centre Potsdam GFZ German Research Centre for Geosciences, Potsdam, Germany / DE Flood Event Explorer Licensed under the Apache License, Version 2.0 (the "License"); you may not use these files except in compliance with the License. You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0 Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions and limitations under the License.
    Keywords: Digital Earth ; Flood ; DASF ; Workflow ; river plume ; ferrybox ; impact ; EARTH SCIENCE 〉 HUMAN DIMENSIONS 〉 NATURAL HAZARDS 〉 FLOODS ; EARTH SCIENCE SERVICES 〉 DATA ANALYSIS AND VISUALIZATION
    Type: Software , Software
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2022-02-01
    Description: Abstract
    Description: The Digital Earth Flood Event Explorer supports geoscientists and experts to analyse flood events along the process cascade event generation, evolution and impact across atmospheric, terrestrial, and marine disciplines. It applies the concept of scientific workflows and the component-based Data Analytics Software Framework (DASF, Eggert and Dransch, 2021) to an exemplary showcase. It aims at answering the following geoscientific questions: - How does precipitation change over the course of the 21st century under different climate scenarios over a certain region? - What are the main hydro-meteorological controls of a specific flood event? - What are useful indicators to assess socio-economic flood impacts? - How do flood events impact the marine environment? - What are the best monitoring sites for upcoming flood events? The Flood Event Explorer developed scientific workflows for each geoscientific question providing enhanced analysis methods from statistics, machine learning, and visual data exploration that are implemented in different languages and software environments, and that access data form a variety of distributed databases. The collaborating scientists are from different Helmholtz research centers and belong to different scientific fields such as hydrology, climate-, marine-, and environmental science, and computer- and data science. It is funded by the Initiative and Networking Fund of the Helmholtz Association through the Digital Earth project (https://www.digitalearth-hgf.de/).
    Description: TechnicalInfo
    Description: Copyright 2022 Helmholtz Centre Potsdam GFZ German Research Centre for Geosciences, Potsdam, Germany / DE Flood Event Explorer Licensed under the Apache License, Version 2.0 (the "License"); you may not use these files except in compliance with the License. You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0 Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions and limitations under the License.
    Keywords: Digital Earth ; Flood ; DASF ; Workflows ; EARTH SCIENCE 〉 HUMAN DIMENSIONS 〉 NATURAL HAZARDS 〉 FLOODS ; EARTH SCIENCE SERVICES 〉 DATA ANALYSIS AND VISUALIZATION
    Type: Software , Software
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
    Publication Date: 2022-12-19
    Description: A comprehensive study of the Earth system and its related processes requires a holistic examination and understanding of multidimensional data acquired with a large number of different sensors or produced by various models. To this end, the Digital Earth project developed a set of software solutions to study environmental data sets using visual approaches. In the following chapter, we present three data visualization products developed to deal with the challenges of the analysis and exploration of environmental data.
    Type: Book chapter , NonPeerReviewed
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...