ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

You have 0 saved results.
Mark results and click the "Add To Watchlist" link in order to add them to this list.
feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
Collection
Keywords
Years
  • 1
    facet.materialart.
    Unknown
    In:  Geophys. Prosp., Dordrecht, American Society of Civil Engineers, vol. 19, no. 6815, pp. 430-458, pp. B09301, (ISSN: 1340-4202)
    Publication Date: 1971
    Keywords: Seismic stratigraphy
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Electronic Resource
    Electronic Resource
    Oxford, UK : Blackwell Publishing Ltd
    Geophysical prospecting 19 (1971), S. 0 
    ISSN: 1365-2478
    Source: Blackwell Publishing Journal Backfiles 1879-2005
    Topics: Geosciences , Physics
    Notes: Modern seismic recording instruments allow precise measurements of the amplitude of reflected signals. Intuitively we would expect that this amplitude information could be used to increase our knowledge of the physical properties of the reflecting earth.The relevant factors defining the amplitude of a reflection signal are: spherical divergence, absorption, the reflection coefficient of the reflecting interface, the cumulative transmission loss at all interfaces above this, and the effect of multiple reflections.Of these factors, three—spherical divergence, the reflection coefficient and the transmission loss—are reasonably clear concepts (though the estimation of transmission loss from acoustic logs caused some difficulties in the hey-day of synthetic seismograms). Absorption still presents considerable problems of detail, but our understanding has increased significantly in recent years.The factor least well understood is undoubtedly the effect of multiple reflections. Multiple paths having an even number of bounces can have the effect of delaying, shaping and magnifying the pulse transmitted through a layered sequence. Simple demonstations of this phenomenon can be made using elementary thin plates, and these can be presented for various synthetic and real sequences of layers. Such demonstrations lead one to explore the relation between the spectrum of the transmitted pulse and the spectrum of the reflection coefficient series.If it were possible to isolate the amplitude and shape variations imposed by absorption within a layer, there would be a chance that this measure of absorption would be useful as a correlatable or diagnostic indication of rock properties. If it were possible to isolate the amplitude and shape variations imposed by multiple reflections, there would be a chance that this measure would be useful as an indication of cyclic sedimentation and of the dominant durations of the sedimentary cycles. However, the separation of these two effects constitutes a formidable challenge. The very difficulty of this separation suggests that it may be opportune to review the quantitative estimates of absorption made by field experiments.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2015-10-20
    Description: The 1,1,1,2-tetrafluoroethane (HFC-134a), an important alternative to CFC-12 in accordance with the Montreal Protocol on Substances that Deplete the Ozone Layer, is a high Global Warming Potential (GWP) greenhouse gas. Here we evaluate variations in global and regional HFC-134a emissions and emission trends, from 1995 to 2010, at a relatively high spatial and temporal (3.75° in longitude × 2.5° in latitude and 8-day) resolution, using surface HFC-134a measurements. Our results show a progressive increase of global HFC-134a emissions from 19 ± 2 Gg/yr in 1995 to 167 ± 5 Gg/yr in 2010, with both a slowdown in developed countries and a 20 %/yr increase in China since 2005. A seasonal cycle is also seen since 2002, which becomes enhanced over time, with larger values during the boreal summer.
    Print ISSN: 0148-0227
    Topics: Geosciences , Physics
    Published by Wiley on behalf of American Geophysical Union (AGU).
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
    Publication Date: 1971-09-01
    Print ISSN: 0016-8025
    Electronic ISSN: 1365-2478
    Topics: Geosciences , Physics
    Published by Wiley
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...