ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

You have 0 saved results.
Mark results and click the "Add To Watchlist" link in order to add them to this list.
feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    ISSN: 1573-2703
    Keywords: turbulent shear layer ; large-eddy simulation ; subgrid-scale models ; acoustic analogy ; Lighthill's analogy.
    Source: Springer Online Journal Archives 1860-2000
    Topics: Mathematics , Technology
    Notes: Abstract The effect of the small scales on the source term in Lighthill's acoustic analogy is investigated, with the objective of determining the accuracy of large-eddy simulations when applied to studies of flow-generated sound. The distribution of the turbulent quadrupole is predicted accurately, if models that take into account the trace of the SGS stresses are used. Its spatial distribution is also correct, indicating that the low-wave-number (or frequency) part of the sound spectrum can be predicted well by LES. Filtering, however, removes the small-scale fluctuations that contribute significantly to the higher derivatives in space and time of Lighthill's stress tensor T ij. The rms fluctuations of the filtered derivatives are substantially lower than those of the unfiltered quantities. The small scales, however, are not strongly correlated, and are not expected to contribute significantly to the far-field sound; separate modeling of the subgrid-scale density fluctuations might, however, be required in some configurations.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    ISSN: 1573-1987
    Keywords: large-eddy simulation ; subgrid-scale models ; generalizedcoordinates ; non-orthogonal grids ; channel flows
    Source: Springer Online Journal Archives 1860-2000
    Topics: Mechanical Engineering, Materials Science, Production Engineering, Mining and Metallurgy, Traffic Engineering, Precision Mechanics
    Notes: Abstract This paper presents the formulation of a mixed dynamic subgrid-scale model in non-Cartesian geometries suitable for the study of complex flows. Following the approach developed by Jordan [J. Comput. Phys. 148, 322 (1999)], the variables are first transformed into a contravariant form and then filtered in the computational space. A dynamic localized mixed model, previously developed within the Cartesian framework has been entirely re-formulated for non-orthogonal meshes. The model performance was evaluated by carrying out two tests. First, a plane channel flow at Reτ = 395 was simulated using both Cartesian and curvilinear grids; the results show that the model formulation is consistent and insensitive to grid distortion, and compares well with the reference data. Then, computations of the turbulent flow over a two-dimensional channel with a wavy wall were performed. Accurate first- and second-order statistics were obtained using relatively coarse grids.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    Electronic Resource
    Electronic Resource
    New York, NY : American Institute of Physics (AIP)
    Physics of Fluids 5 (1993), S. 1484-1490 
    ISSN: 1089-7666
    Source: AIP Digital Archive
    Topics: Physics
    Notes: The dynamic subgrid-scale eddy viscosity model has been used in the large-eddy simulation of the turbulent flow in a plane channel for Reynolds numbers based on friction velocity and channel half-width ranging between 200 and 2000, a range including values significantly higher than in previous simulations. The computed wall stress, mean velocity, and Reynolds stress profiles compare very well with experimental and direct simulation data. Comparison of higher moments is also satisfactory. Although the grid in the near-wall region is fairly coarse, the results are quite accurate: the turbulent kinetic energy peaks at y+(approximately-equal-to)12, and the near-wall behavior of the resolved stresses is captured accurately. The model coefficient is o(10−3) in the buffer layer and beyond, where the cutoff wave numbers are in the decaying region of the spectra; in the near-wall region the cutoff wave numbers are nearer the energy-containing range, and the resolved turbulent stresses become a constant fraction of the resolved stresses. This feature is responsible for the correct near-wall behavior of the model coefficient. In the near-wall region the eddy viscosity is reduced to account for the energy transfer from small to large scales that may occur locally.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
    Electronic Resource
    Electronic Resource
    New York, NY : American Institute of Physics (AIP)
    Physics of Fluids 1 (1989), S. 609-611 
    ISSN: 1089-7666
    Source: AIP Digital Archive
    Topics: Physics
    Notes: The results of large eddy simulation (LES) of the Navier–Stokes equations are used to evaluate the validity of Taylor's hypothesis of frozen turbulence, which states that the time derivative of some instantaneous quantity is proportional to its derivative in the streamwise direction, for incompressible plane channel flow. Time and space derivatives in the streamwise direction of the velocity components are, in fact, found to be well correlated. Root-mean-square fluctuations of the terms in Taylor's hypothesis also support the validity of this hypothesis above the buffer layer. The good agreement between LES and experimental results indicates that errors in the evaluation of derivatives in the streamwise direction are due mostly to insufficient resolution.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 5
    Electronic Resource
    Electronic Resource
    [S.l.] : American Institute of Physics (AIP)
    Physics of Fluids 8 (1996), S. 215-224 
    ISSN: 1089-7666
    Source: AIP Digital Archive
    Topics: Physics
    Notes: Conditional averages of the velocity field, subgrid-scale (SGS) stresses and SGS dissipation are calculated using the velocity fields obtained from the DNS of plane channel flow. The detection criteria isolate the coherent turbulent structures that contribute most strongly to the energy transfer between the large, resolved scales and the subgrid, unresolved, ones. Separate averages are computed for forward and backward scatter. The interscale energy transfer is found to be strongly correlated with the presence of the turbulent structures typical of wall-bounded flows: quasi-streamwise and hairpin vortices, sweeps and ejections. In the buffer layer, strong SGS dissipation is observed near lifted shear layers; the forward scatter is associated with ejections, the backscatter with sweeps. Both backward and forward scatter occur in close proximity to longitudinal vortices that form a very shallow angle to the wall. Further away from the solid boundary, in the logarithmic region and beyond, both forward and backward energy transfer are associated prevalently with ejections. Eddy viscosity models do not predict the three-dimensional structure of these events adequately, while scale-similar models reproduce the correlation between the large-scale coherent structures and the SGS events more accurately. © 1996 American Institute of Physics.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 6
    Electronic Resource
    Electronic Resource
    New York, NY : American Institute of Physics (AIP)
    Physics of Fluids 3 (1991), S. 1760-1765 
    ISSN: 1089-7666
    Source: AIP Digital Archive
    Topics: Physics
    Notes: One major drawback of the eddy viscosity subgrid-scale stress models used in large-eddy simulations is their inability to represent correctly with a single universal constant different turbulent fields in rotating or sheared flows, near solid walls, or in transitional regimes. In the present work a new eddy viscosity model is presented which alleviates many of these drawbacks. The model coefficient is computed dynamically as the calculation progresses rather than input a priori. The model is based on an algebraic identity between the subgrid-scale stresses at two different filtered levels and the resolved turbulent stresses. The subgrid-scale stresses obtained using the proposed model vanish in laminar flow and at a solid boundary, and have the correct asymptotic behavior in the near-wall region of a turbulent boundary layer. The results of large-eddy simulations of transitional and turbulent channel flow that use the proposed model are in good agreement with the direct simulation data.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 7
    Electronic Resource
    Electronic Resource
    New York, NY : American Institute of Physics (AIP)
    Physics of Fluids 3 (1991), S. 1766-1771 
    ISSN: 1089-7666
    Source: AIP Digital Archive
    Topics: Physics
    Notes: Most subgrid-scale (SGS) models for large-eddy simulations (LES) are absolutely dissipative (that is, they remove energy from the large scales at each point in the physical space). The actual SGS stresses, however, may transfer energy to the large scales (backscatter) at a given location. Recent work on the LES of transitional flows [Piomelli et al., Phys. Fluids A 2, 257 (1990)] has shown that failure to account for this phenomenon can cause inaccurate prediction of the growth of the perturbations. Direct numerical simulations of transitional and turbulent channel flow and compressible isotropic turbulence are used to study the backscatter phenomenon. In all flows considered roughly 50% of the grid points were experiencing backscatter when a Fourier cutoff filter was used. The backscatter fraction was less with a Gaussian filter, and intermediate with a box filter in physical space. Moreover, the backscatter and forward scatter contributions to the SGS dissipation were comparable, and each was often much larger than the total SGS dissipation. The SGS dissipation (normalized by total dissipation) increased with filter width almost independently of filter type. The amount of backscatter showed an increasing trend with Reynolds number. In the near-wall region of the channel, events characterized by strong Reynolds shear stress correlated fairly well with areas of high SGS dissipation (both forward and backward). In compressible isotropic turbulence similar results were obtained, independent of fluctuation Mach number.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 8
    Electronic Resource
    Electronic Resource
    New York, NY : American Institute of Physics (AIP)
    Physics of Fluids 2 (1990), S. 257-265 
    ISSN: 1089-7666
    Source: AIP Digital Archive
    Topics: Physics
    Notes: The structure of the subgrid-scale fields in plane channel flow has been studied at various stages of the transition process to turbulence. The residual stress and subgrid-scale dissipation calculated using velocity fields generated by direct numerical simulations of the Navier–Stokes equations are significantly different from their counterparts in turbulent flows. The subgrid scale dissipation changes sign over extended areas of the channel, indicating energy flow from the small scales to the large scales. This reversed energy cascade becomes less pronounced at the later stages of transition. Standard residual stress models of the Smagorinsky type are excessively dissipative. Rescaling the model constant improves the prediction of the total (integrated) subgrid scale dissipation, but not that of the local one. Despite the somewhat excessive dissipation of the rescaled Smagorinsky model, the results of a large-eddy simulation of transition on a flat-plate boundary layer compare quite well with those of a direct simulation, and require only a small fraction of the computational effort.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 9
    Electronic Resource
    Electronic Resource
    [S.l.] : American Institute of Physics (AIP)
    Physics of Fluids 31 (1988), S. 1884-1891 
    ISSN: 1089-7666
    Source: AIP Digital Archive
    Topics: Physics
    Notes: Combinations of filters and subgrid scale stress models for large eddy simulation of the Navier–Stokes equations are examined by a priori tests and numerical simulations. The structure of the subgrid scales is found to depend strongly on the type of filter used, and consistency between model and filter is essential to ensure accurate results. The implementation of consistent combinations of filter and model gives more accurate turbulence statistics than those obtained in previous investigations in which the models were chosen independently from the filter. Results and limitations of the a priori test are discussed. The effect of grid refinement is also examined.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 10
    Electronic Resource
    Electronic Resource
    [S.l.] : American Institute of Physics (AIP)
    Physics of Fluids 29 (1986), S. 3471-3474 
    ISSN: 1089-7666
    Source: AIP Digital Archive
    Topics: Physics
    Notes: Rapid distortion theory is applied to study the response of homogeneous turbulence to imposed arbitrary irrotational mean strains. Expressions useful in turbulence modeling, such as the Reynolds stresses and vorticity correlations, have been obtained.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...