ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

You have 0 saved results.
Mark results and click the "Add To Watchlist" link in order to add them to this list.
feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Publication Date: 2020-08-27
    Electronic ISSN: 1753-318X
    Topics: Architecture, Civil Engineering, Surveying , Geosciences
    Published by Wiley
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2016-04-01
    Description: The use of probabilistic forecasts is necessary to take into account uncertainties and allow for optimal risk-based decisions in streamflow forecasting at monthly to seasonal lead times. Such probabilistic forecasts have long been used by practitioners in the operation of water reservoirs, in water allocation and management, and more recently in drought preparedness activities. Various studies assert the potential value of hydrometeorological forecasting efforts, but few investigate how these forecasts are used in the decision-making process. Role-playing games can help scientists, managers, and decision-makers understand the extremely complex process behind risk-based decisions. In this paper, we present an experiment focusing on the use of probabilistic forecasts to make decisions on reservoir outflows. The setup was a risk-based decision-making game, during which participants acted as water managers. Participants determined monthly reservoir releases based on a sequence of probabilistic inflow forecasts, reservoir volume objectives, and release constraints. After each decision, consequences were evaluated based on the actual inflow. The analysis of 162 game sheets collected after eight applications of the game illustrates the importance of leveraging not only the probabilistic information in the forecasts but also predictions for a range of lead times. Winning strategies tended to gradually empty the reservoir in the months before the peak inflow period to accommodate its volume and avoid overtopping. Twenty percent of the participants managed to do so and finished the management period without having exceeded the maximum reservoir capacity or violating downstream release constraints. The role-playing approach successfully created an open atmosphere to discuss the challenges of using probabilistic forecasts in sequential decision-making.
    Print ISSN: 0003-0007
    Electronic ISSN: 1520-0477
    Topics: Geography , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2016-01-01
    Description: The International Grand Global Ensemble (TIGGE) was a major component of The Observing System Research and Predictability Experiment (THORPEX) research program, whose aim is to accelerate improvements in forecasting high-impact weather. By providing ensemble prediction data from leading operational forecast centers, TIGGE has enhanced collaboration between the research and operational meteorological communities and enabled research studies on a wide range of topics. The paper covers the objective evaluation of the TIGGE data. For a range of forecast parameters, it is shown to be beneficial to combine ensembles from several data providers in a multimodel grand ensemble. Alternative methods to correct systematic errors, including the use of reforecast data, are also discussed. TIGGE data have been used for a range of research studies on predictability and dynamical processes. Tropical cyclones are the most destructive weather systems in the world and are a focus of multimodel ensemble research. Their extratropical transition also has a major impact on the skill of midlatitude forecasts. We also review how TIGGE has added to our understanding of the dynamics of extratropical cyclones and storm tracks. Although TIGGE is a research project, it has proved invaluable for the development of products for future operational forecasting. Examples include the forecasting of tropical cyclone tracks, heavy rainfall, strong winds, and flood prediction through coupling hydrological models to ensembles. Finally, the paper considers the legacy of TIGGE. We discuss the priorities and key issues in predictability and ensemble forecasting, including the new opportunities of convective-scale ensembles, links with ensemble data assimilation methods, and extension of the range of useful forecast skill.
    Print ISSN: 0003-0007
    Electronic ISSN: 1520-0477
    Topics: Geography , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
    Publication Date: 2016-11-01
    Description: A global fire danger rating system driven by atmospheric model forcing has been developed with the aim of providing early warning information to civil protection authorities. The daily predictions of fire danger conditions are based on the U.S. Forest Service National Fire-Danger Rating System (NFDRS), the Canadian Forest Service Fire Weather Index Rating System (FWI), and the Australian McArthur (Mark 5) rating systems. Weather forcings are provided in real time by the European Centre for Medium-Range Weather Forecasts forecasting system at 25-km resolution. The global system’s potential predictability is assessed using reanalysis fields as weather forcings. The Global Fire Emissions Database (GFED4) provides 11 yr of observed burned areas from satellite measurements and is used as a validation dataset. The fire indices implemented are good predictors to highlight dangerous conditions. High values are correlated with observed fire, and low values correspond to nonobserved events. A more quantitative skill evaluation was performed using the extremal dependency index, which is a skill score specifically designed for rare events. It revealed that the three indices were more skillful than the random forecast to detect large fires on a global scale. The performance peaks in the boreal forests, the Mediterranean region, the Amazon rain forests, and Southeast Asia. The skill scores were then aggregated at the country level to reveal which nations could potentially benefit from the system information to aid decision-making and fire control support. Overall it was found that fire danger modeling based on weather forecasts can provide reasonable predictability over large parts of the global landmass.
    Print ISSN: 1558-8424
    Electronic ISSN: 1558-8432
    Topics: Geography , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 5
    Publication Date: 2016-11-01
    Description: In the last decade operational probabilistic ensemble flood forecasts have become common in supporting decision-making processes leading to risk reduction. Ensemble forecasts can assess uncertainty, but they are limited to the uncertainty in a specific modeling system. Many of the current operational flood prediction systems use a multimodel approach to better represent the uncertainty arising from insufficient model structure. This study presents a multimodel approach to building a global flood prediction system using multiple atmospheric reanalysis datasets for river initial conditions and multiple TIGGE forcing inputs to the ECMWF land surface model. A sensitivity study is carried out to clarify the effect of using archive ensemble meteorological predictions and uncoupled land surface models. The probabilistic discharge forecasts derived from the different atmospheric models are compared with those from the multimodel combination. The potential for further improving forecast skill by bias correction and Bayesian model averaging is examined. The results show that the impact of the different TIGGE input variables in the HTESSEL/Catchment-Based Macroscale Floodplain model (CaMa-Flood) setup is rather limited other than for precipitation. This provides a sufficient basis for evaluation of the multimodel discharge predictions. The results also highlight that the three applied reanalysis datasets have different error characteristics that allow for large potential gains with a multimodel combination. It is shown that large improvements to the forecast performance for all models can be achieved through appropriate statistical postprocessing (bias and spread correction). A simple multimodel combination generally improves the forecasts, while a more advanced combination using Bayesian model averaging provides further benefits.
    Print ISSN: 1525-755X
    Electronic ISSN: 1525-7541
    Topics: Geography , Geosciences , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 6
    Publication Date: 2016-04-01
    Description: The Global Flood Awareness System (GloFAS) is a preoperational suite performing daily streamflow simulations to detect severe floods in large river basins. GloFAS defines the severity of a flood event with respect to thresholds estimated based on model-simulated streamflow climatology. Hence, determining accurate and consistent critical thresholds is important for its skillful flood forecasting. In this work, streamflow climatologies derived from two global meteorological inputs were compared, and their impacts on global flood forecasting were assessed. The first climatology is based on precipitation-corrected reanalysis data (ERA-Interim), which is currently used in the operational GloFAS forecast, while the second is derived from reforecasts that are routinely produced using the latest weather model. The results of the comparison indicate that 1) flood thresholds derived from the two datasets have substantial dissimilarities with varying characteristics across different regions of the globe; 2) the differences in the thresholds have a spatially variable impact on the severity classification of a flood; and 3) ERA-Interim produced lower flood threshold exceedance probabilities (and flood detection rates) than the reforecast for several large rivers at short forecast lead times, where the uncertainty in the meteorological forecast is smaller. Overall, it was found that the use of reforecasts, instead of ERA-Interim, marginally improved the flood detection skill of GloFAS forecasts.
    Print ISSN: 1525-755X
    Electronic ISSN: 1525-7541
    Topics: Geography , Geosciences , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 7
    Publication Date: 2016-04-01
    Description: The land surface forms an important component of Earth system models and interacts nonlinearly with other parts such as ocean and atmosphere. To capture the complex and heterogeneous hydrology of the land surface, land surface models include a large number of parameters impacting the coupling to other components of the Earth system model. Focusing on ECMWF’s land surface model Hydrology Tiled ECMWF Scheme of Surface Exchanges over Land (HTESSEL), the authors present in this study a comprehensive parameter sensitivity evaluation using multiple observational datasets in Europe. The authors select six poorly constrained effective parameters (surface runoff effective depth, skin conductivity, minimum stomatal resistance, maximum interception, soil moisture stress function shape, and total soil depth) and explore their sensitivity to model outputs such as soil moisture, evapotranspiration, and runoff using uncoupled simulations and coupled seasonal forecasts. Additionally, the authors investigate the possibility to construct ensembles from the multiple land surface parameters. In the uncoupled runs the authors find that minimum stomatal resistance and total soil depth have the most influence on model performance. Forecast skill scores are moreover sensitive to the same parameters as HTESSEL performance in the uncoupled analysis. The authors demonstrate the robustness of these findings by comparing multiple best-performing parameter sets and multiple randomly chosen parameter sets. The authors find better temperature and precipitation forecast skill with the best-performing parameter perturbations demonstrating representativeness of model performance across uncoupled (and hence less computationally demanding) and coupled settings. Finally, the authors construct ensemble forecasts from ensemble members derived with different best-performing parameterizations of HTESSEL. This incorporation of parameter uncertainty in the ensemble generation yields an increase in forecast skill, even beyond the skill of the default system.
    Print ISSN: 0027-0644
    Electronic ISSN: 1520-0493
    Topics: Geography , Geosciences , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 8
    Publication Date: 2016-06-23
    Description: This paper presents an approach to postprocess ensemble forecasts for the discrete and bounded weather variable of total cloud cover. Two methods for discrete statistical postprocessing of ensemble predictions are tested: the first approach is based on multinomial logistic regression and the second involves a proportional odds logistic regression model. Applying them to total cloud cover raw ensemble forecasts from the European Centre for Medium-Range Weather Forecasts improves forecast skill significantly. Based on stationwise postprocessing of raw ensemble total cloud cover forecasts for a global set of 3330 stations over the period from 2007 to early 2014, the more parsimonious proportional odds logistic regression model proved to slightly outperform the multinomial logistic regression model.
    Print ISSN: 0027-0644
    Electronic ISSN: 1520-0493
    Topics: Geography , Geosciences , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 9
    Publication Date: 2017-08-01
    Description: Early awareness of extreme precipitation can provide the time necessary to make adequate event preparations. At the European Centre for Medium-Range Weather Forecasts (ECMWF), one tool that condenses the forecast information from the Integrated Forecasting System ensemble (ENS) is the extreme forecast index (EFI), an index that highlights regions that are forecast to have potentially anomalous weather conditions compared to the local climate. This paper builds on previous findings by undertaking a global verification throughout the medium-range forecast horizon (out to 15 days) on the ability of the EFI for water vapor transport [integrated vapor transport (IVT)] and precipitation to capture extreme observed precipitation. Using the ECMWF ENS for winters 2015/16 and 2016/17 and daily surface precipitation observations, the relative operating characteristic is used to show that the IVT EFI is more skillful than the precipitation EFI in forecast week 2 over Europe and western North America. It is the large-scale nature of the IVT, its higher predictability, and its relationship with extreme precipitation that result in its potential usefulness in these regions, which, in turn, could provide earlier awareness of extreme precipitation. Conversely, at shorter lead times the precipitation EFI is more useful, although the IVT EFI can provide synoptic-scale understanding. For the whole globe, the extratropical Northern Hemisphere, the tropics, and North America, the precipitation EFI is more useful throughout the medium range, suggesting that precipitation processes not captured in the IVT are important (e.g., tropical convection). Following these results, the operational implementation of the IVT EFI is currently being planned.
    Print ISSN: 0882-8156
    Electronic ISSN: 1520-0434
    Topics: Geography , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 10
    Publication Date: 2017-10-01
    Description: In the absence of a dynamical fire model that could link the emissions to the weather dynamics and the availability of fuel, atmospheric composition models, such as the European Copernicus Atmosphere Monitoring Services (CAMS), often assume persistence, meaning that constituents produced by the biomass burning process during the first day are assumed constant for the whole length of the forecast integration (5 days for CAMS). While this assumption is simple and practical, it can produce unrealistic predictions of aerosol concentration due to an excessive contribution from biomass burning. This paper introduces a time-dependent factor , which modulates the amount of aerosol emitted from fires during the forecast. The factor is related to the daily change in fire danger conditions and is a function of the fire weather index (FWI). The impact of the new scheme was tested in the atmospheric composition model managed by the CAMS. Experiments from 5 months of daily forecasts in 2015 allowed for both the derivation of global statistics and the analysis of two big fire events in Indonesia and Alaska, with extremely different burning characteristics. The results indicate that time-modulated emissions based on the FWI calculations lead to predictions that are in better agreement with observations.
    Print ISSN: 1558-8424
    Electronic ISSN: 1558-8432
    Topics: Geography , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...