ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

You have 0 saved results.
Mark results and click the "Add To Watchlist" link in order to add them to this list.
feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Call number: SR 90.0001(1866-G)
    In: U.S. Geological Survey bulletin
    Type of Medium: Series available for loan
    Pages: III, G-11 S. + 2 pl.
    Series Statement: U.S. Geological Survey bulletin 1866-G
    Language: English
    Location: Lower compact magazine
    Branch Library: GFZ Library
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2019-07-17
    Repository Name: EPIC Alfred Wegener Institut
    Type: Article , isiRev
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2019-07-17
    Repository Name: EPIC Alfred Wegener Institut
    Type: Article , isiRev
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
    Publication Date: 2015-11-27
    Description: The increasingly dense coverage of Europe with broad-band seismic stations makes it possible to image its lithospheric structure in great detail, provided that structural information can be extracted effectively from the very large volumes of data. We develop an automated technique for the measurement of interstation phase velocities of (earthquake-excited) fundamental-mode surface waves in very broad period ranges. We then apply the technique to all available broad-band data from permanent and temporary networks across Europe. In a new implementation of the classical two-station method, Rayleigh and Love dispersion curves are determined by cross-correlation of seismograms from a pair of stations. An elaborate filtering and windowing scheme is employed to enhance the target signal and makes possible a significantly broader frequency band of the measurements, compared to previous implementations of the method. The selection of acceptable phase-velocity measurements for each event is performed in the frequency domain, based on a number of fine-tuned quality criteria including a smoothness requirement. Between 5 and 3000 single-event dispersion measurements are averaged per interstation path in order to obtain robust, broad-band dispersion curves with error estimates. In total, around 63,000 Rayleigh- and 27,500 Love-wave dispersion curves between 10 and 350 s have been determined, with standard deviations lower than 2 per cent and standard errors lower than 0.5 per cent. Comparisons of phase-velocity measurements using events at opposite backazimuths and the examination of the variance of the phase-velocity curves are parts of the quality control. With the automated procedure, large data sets can be consistently and repeatedly measured using varying selection parameters. Comparison of average interstation dispersion curves obtained with different degrees of smoothness shows that rough perturbations do not systematically bias the average dispersion measurement. They can, therefore, be treated as random but they do need to be removed in order to reduce random errors of the measurements. Using our large new data set, we construct phase-velocity maps for central and northern Europe. According to checkerboard tests, the lateral resolution in central Europe is ≤150 km. Comparison of regional surface-wave tomography with independent data on sediment thickness in North-German Basin and Polish Trough confirms the high-resolution potential of our phase-velocity measurements. At longer periods, the structure of the lithosphere and asthenosphere around the Trans-European Suture Zone (TESZ) is seen clearly. The region of the Tornquist-Teisseyre-Zone in the southeast is associated with a stronger lateral contrast in lithospheric thickness, across the TESZ compared to the region across the Sorgenfrei-Tornquist-Zone in the northwest.
    Repository Name: EPIC Alfred Wegener Institut
    Type: Article , isiRev
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 5
    Publication Date: 2017-06-06
    Description: The presented study is a part of the passive seismic experiment PASSEQ 2006–2008, which took place around the Trans-European Suture Zone (TESZ) from May 2006 to June 2008. The data set of 4195 manually picked arrivals of teleseismic P waves of 101 earthquakes (EQs) recorded in the seismic stations deployed to the east of the TESZ was inverted using the non-linear teleseismic tomography algorithm TELINV. Two 3-D crustal models were used to estimate the crustal travel time (TT) corrections. As a result, we obtain a model of P-wave velocity variations in the upper mantle beneath the TESZ and the East European Craton (EEC). In the study area beneath the craton, we observe up to 3% higher and beneath the TESZ about 2–3% lower seismic velocities compared to the IASP91 velocity model. We find the seismic lithosphere–asthenosphere boundary (LAB) beneath the TESZ at a depth of about 180 km, while we observe no seismic LAB beneath the EEC. The inversion results obtained with the real and the synthetic data sets indicate a ramp shape of the LAB in the northern TESZ, where we observe values of seismic velocities close to those of the craton down to about 150 km. The lithosphere thickness in the EEC increases going from the TESZ to the NE from about 180 km beneath Poland to 300 km or more beneath Lithuania. Moreover, in western Lithuania we find an indication of an uppermantle dome. In our results, the crustal units are not well resolved. There are no clear indications of the features in the upper mantle which could be related to the crustal units in the study area. On the other hand, at a depth of 120–150 km we indicate a trace of a boundary of proposed palaeosubduction zone between the East Lithuanian Domain (EL) and theWest Lithuanian Granulite Domain (WLG). Also, in our results, we may have identified two anorogenic granitoid plutons.
    Repository Name: EPIC Alfred Wegener Institut
    Type: Article , isiRev
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 6
    Publication Date: 2017-06-13
    Description: The presented study aims to resolve the upper mantle structure around the Trans-European Suture Zone (TESZ), which is the major tectonic boundary in Europe. The data of 183 temporary and permanent seismic stations operated during the period of the PASsive Seismic Experiment (PASSEQ) 2006–2008 within the study area from Germany to Lithuania was used to compile the data set of manually picked 6008 top-quality arrivals of P waves from teleseismic earthquakes. We used the TELINV nonlinear teleseismic tomography algorithm to perform the inversions. As a result, we obtain a model of P wave velocity variations up to about �3% with respect to the IASP91 velocity model in the upper mantle around the TESZ. The higher velocities to the east of the TESZ correspond to the older East European Craton (EEC), while the lower velocities to the west of the TESZ correspond to younger western Europe.We find that the seismic lithosphere–asthenosphere boundary (LAB) is more distinct beneath the Phanerozoic part of Europe than beneath the Precambrian part. To the west of the TESZ beneath the eastern part of the Bohemian Massif, the Sudetes Mountains and the Eger Rift, the negative anomalies are observed from a depth of at least 70 km, while under the Variscides the average depth of the seismic LAB is about 100 km.We do not observe the seismic LAB beneath the EEC, but beneath Lithuania we find the thickest lithosphere of about 300 km or more. Beneath the TESZ, the asthenosphere is at a depth of 150– 180 km, which is an intermediate value between that of the EEC and western Europe. The results imply that the seismic LAB in the northern part of the TESZ is in the shape of a ramp dipping to the northeasterly direction. In the southern part of the TESZ, the LAB is shallower, most probably due to younger tectonic settings. In the northern part of the TESZ we do not recognize any clear contact between Phanerozoic and Proterozoic Europe, but further to the south we may refer to a sharp and steep contact on the eastern edge of the TESZ. Moreover, beneath Lithuania at depths of 120–150 km, we observe the lower velocity area following the boundary of the proposed paleosubduction zone.
    Repository Name: EPIC Alfred Wegener Institut
    Type: Article , isiRev
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 7
    Electronic Resource
    Electronic Resource
    Oxford, UK : Blackwell Publishing Ltd
    Geophysical journal international 100 (1990), S. 0 
    ISSN: 1365-246X
    Source: Blackwell Publishing Journal Backfiles 1879-2005
    Topics: Geosciences
    Notes: In August 1985 the crustal structure underlying the southern part of the Kenya Rift Valley was investigated by long-range explosion seismology. the experiment (KRISP 85) consisted of two seismic lines in the central sector of the rift, one along the axis and the other across it. Interpretation of the data, including time-term analysis and ray tracing has shown that the thickness of rift infill varies from about 6km below Lake Naivasha to about 2 and 1.5km below Lake Magadi and Lake Bogoria respectively. the underlying material has a P-wave velocity of 6.05 ± 0.03 km s-1 which suggests that the rift is underlain by Precambrian metamorphic basement. A localized high-velocity zone identified to the east of Nakuru may be due to basic intrusive material. the P-wave velocity increases discontinuously to 6.45 ± 0.2 km s-1 at a depth of 12.5 ± 1.0 km below sea level. This depth is similar to that inferred for the brittle-ductile transition zone from a study of local seismicity in the Lake Bogoria region. A high P-wave velocity layer (7.1 ± 0.2 km s-1) occurs at 22 ± 2 km depth below sea level which might be associated with a sill-like basic intrusion in the lower crust. an upper mantle velocity of 7.5 ± 0.2 km s-1 (unreversed) is reached at a depth of 34.0 ± 2.0 km below sea level. This implies that only moderate crustal thinning has occurred beneath the central sector of the rift. No evidence was obtained for the existence of a continuous‘axial intrusion’reaching to shallow levels below the rift and associated with crustal separation as suggested by previous studies.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 8
    Publication Date: 1976-01-01
    Print ISSN: 0022-1376
    Electronic ISSN: 1537-5269
    Topics: Geosciences
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 9
    Publication Date: 2015-09-30
    Description: Rifts are segmented linear depressions that are filled with sedimentary and igneous rocks; they form by extension and often evolve into plate boundaries. Flood basalts, a class of large igneous provinces (LIPs), are broad regions of extensive volcanism formed by sublithospheric processes. Typical rifts are not filled with flood basalts, and typical flood basalts are not associated with significant crustal extension and faulting. North America’s Midcontinent Rift (MCR) is an unusual combination, because its 3000-km length formed during a continental breakup event 1.1 Ga, but it contains an enormous volume of igneous rocks that are mostly flood basalt. We show that MCR volcanic rocks are significantly thicker than other flood basalts, due to their deposition in a narrow rift rather than across a broad region, giving the MCR a rift’s geometry but a LIP’s magma volume. Structural modeling of seismic-reflection data shows that LIP volcanics were deposited during two phases—an initial rift phase where flood basalts filled a fault-controlled extending basin and a postrift phase where LIP volcanics and sediments were deposited in a thermally subsiding sag basin without associated faulting. The crust thinned during the initial rifting phase and then rethickened during the postrift phase and later compression, yielding the present thicker crust observed seismologically. The restriction of extension to a single normal fault in each rift segment, steeply inward-dipping rift shoulders with sharp hinges, and persistence of volcanism after rifting ended gave rise to a deep flood basalt–filled rift geometry not observed in other presently active or ancient rifts. The unusual coincidence of a rift and LIP arose when a new rift associated with continental breakup interacted with a mantle plume or overrode anomalously hot or fertile upper mantle.
    Electronic ISSN: 1553-040X
    Topics: Geosciences
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 10
    Publication Date: 2015-01-29
    Description: The Harney Basin is a relatively flat-lying depression in the northeast corner of the enigmatic High Lava Plains volcanic province in eastern Oregon. A thick blanket of volcanics including flood basalts, rhyolites, tuffs, ash flows, and distinct eruptive centers covers the basin, making it very difficult to study the upper-crustal features. In addition to a portion of the High Lava Plains active source seismic data in the Harney Basin area, we employed geologic, gravity, magnetic, digital elevation, and other geospatial data in our integrated study. We generated an upper-crustal 3D seismic tomographic model of the Harney Basin using a sparse grid of 2D seismic lines and constructed an integrated geophysical model of the upper-crustal structure, which reveals that the basin reaches as deep as 6 km in its central area. The tomographic inversion also detected some unusually high-velocity (〉6.5 km/s) bodies in the upper crust near the central basin area. The presence of several ash-flow tuffs and voluminous rhyolites in the Harney Basin region indicates that the sources of these materials are nearby. We observe two major caldera-shaped features within the basin, which we interpret to be likely candidates for the source of some of these tuffs. These potential calderas are associated with low seismic velocities, low gravity anomaly values, and topographic depressions. We interpret the extent and evolution of these potential calderas based on our integrated analysis.
    Electronic ISSN: 1553-040X
    Topics: Geosciences
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...