ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

You have 0 saved results.
Mark results and click the "Add To Watchlist" link in order to add them to this list.
feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Publication Date: 2018-11-29
    Description: Background: Chromosome 14q32 rearrangements involving the immunoglobulin heavy chain gene (IGH) affect less than 5% of chronic lymphocytic leukemia (CLL) patients. Their clinical course is aggressive and the outcome, worse than other CLL subtypes (Cavazzini et al, 2008; Gerrie et al, 2012). However, the biology of CLL showing IGH rearrangements (CLL-IGHR) is not completely defined. The identification of novel recurrent mutations in CLL by next generation-sequencing (NGS) has offered a more comprehensive view into the genomic landscape of the disease and improved the prognostication of CLL. Thus, mutational analysis might be especially useful in those patients with uncertain prognosis, such as those carrying IGH rearrangements. Aim: To analyze the mutational profile of CLL-IGHR patients by targeted NGS in order to improve our understanding of the genetic underpinnings of this subgroup. Methods: The study was based on 899 CLL patients, well characterized at cytogenetic, biological and clinical level, forty-two of them (4.7%) showing IGH rearrangements. Targeted NGS was performed in 231 CLL samples: 117 with 13q deletion, 27 with 11q deletion, 26 trisomy 12, 42 showing IGH rearrangements and the remaining 19 without any cytogenetic alteration. CD19+ B cells were isolated and DNA extracted. SureSelectQXT targeted enrichment technology and a custom-designed panel (MiSeq, Illumina), including 54 CLL-related and recurrent mutated genes, was carried out. The panel yielded 100x or greater coverage on 97% of the genomic regions of interest and the mean coverage obtained was 600x. Mutations were detected down to 3% allele frequency. Results: The mutational analysis of CLL-IGHR patients identified a total of 72 mutations in 32 genes. Seventy-one percent of patients (30/42) harbored at least one mutation. The most frequently mutated genes in this cohort were NOTCH1 (28.6%), POT1 (14.3%), TP53 (9.5%), SF3B1 (7%), BRAF (7%), EGR2 (7%), IGLL5 (7%) and MGA (7%), followed by BCL2, HIST1H1E and FBXW7 (4.8%), uncommonly mutated genes in CLL at these frequencies (Table 1). In fact, mutations in NOTCH1, BRAF, EGR2, BCL2, HIST1H1E and FBXW7 were significantly associated with CLL-IGHR patients (p=0.013, p=0.003, p=0.021, p=0.038, p=0.038 and p=0.021 respectively). In terms of time to the first therapy (TFT), CLL-IGHR had an intermediate-negative impact (median TFT=24 months) compared to the presence of cytogenetic alterations associated with good prognosis such as 13q deletions (median TFT〉120 months; p
    Print ISSN: 0006-4971
    Electronic ISSN: 1528-0020
    Topics: Biology , Medicine
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2016-12-02
    Description: Introduction: Myelodysplastic syndromes (MDS) are hematological disorders at high risk of progression to acute myeloid leukemia (AML). Although, next-generation sequencing has increased our understanding of the pathogenesis of these disorders, the dynamics of these changes and clonal evolution during progression have just begun to be understood. This study aimed to identify the genetic abnormalities and study the clonal evolution during the progression from MDS to AML. Methods: A combination of whole exome (WES) and targeted-deep sequencing was performed on 40 serial samples (20 MDS/CMML patients evolving to AML) collected at two time-points: at diagnosis (disease presentation) and at AML transformation (disease evolution). Patients were divided in two different groups: those who received no disease modifying treatment before they transformed into AML (n=13), and those treated with lenalidomide (Lena, n=2) and azacytidine (AZA, n=5) and then progressed. Initially, WES was performed on the whole cohort at the MDS stage and at the leukemic phase (after AML progression). Driver mutations were identified, after variant calling by a standardized bioinformatics pipeline, by using the novel tool "Cancer Genome Interpreter" (https://www.cancergenomeinterpreter.org). Secondly, to validate WES results, 30 paired samples of the initial cohort were analyzed with a custom capture enrichment panel of 117 genes, previously related to myeloid neoplasms. Results: A total of 121 mutations in 70 different genes were identified at the AML stage, with mostly all of them (120 mutations) already present at the MDS stage. Only 5 mutations were only detected at the MDS phase and disappeared during progression (JAK2, KRAS, RUNX1, WT1, PARN). These results suggested that the majority of the molecular lesions occurring in MDS were already present at initial presentation of the disease, at clonal or subclonal levels, and were retained during AML evolution. To study the dynamics of these mutations during the evolution from MDS/CMML to AML, we compared the variant allele frequencies (VAFs) detected at the AML stage to that at the MDS stage in each patient. We identified different dynamics: mutations that were initially present but increased (clonal expansion; STAG2) or decreased (clonal reduction; TP53) during clinical course; mutations that were newly acquired (BCOR) or disappearing (JAK2, KRAS) over time; and mutations that remained stable (SRSF2, SF3B1) during the evolution of the disease. It should be noted that mutational burden of STAG2 were found frequently increased (3/4 patients), with clonal sizes increasing more than three times at the AML transformation (26〉80%, 12〉93%, 23〉86%). Similarly, in 4/8 patients with TET2 mutations, their VAFs were double increased (22〉42%, 15〉61%, 50〉96%, 17〉100%), in 2/8 were decreased (60〉37%, 51〉31%), while in the remaining 2 stayed stable (53〉48%, 47〉48%) at the AML stage. On the other hand, mutations in SRSF2 (n=3/4), IDH2 (n=2/3), ASXL1 (n=2/3), and SF3B1 (n=3/3) showed no changes during progression to AML. This could be explained somehow because, in leukemic phase, disappearing clones could be suppressed by the clonal expansion of other clones with other mutations. Furthermore we analyzed clonal dynamics in patients who received treatment with Lena or AZA and after that evolved to AML, and compared to non-treated patients. We observed that disappearing clones, initially present at diagnosis, were more frequent in the "evolved after AZA" group vs. non-treated (80% vs. 38%). By contrast, increasing mutations were similar between "evolved after AZA" and non-treated patients (60% vs. 61%). These mutations involved KRAS, DNMT1, SMC3, TP53 and TET2among others. Therefore AZA treatment could remove some mutated clones. However, eventual transformation to AML would occur through persistent clones that acquire a growth advantage and expand during the course of the disease. By contrast, lenalidomide did not reduce the mutational burden in the two patients studied. Conclusions: Our study showed that the progression to AML could be explained by different mutational processes, as well as by the occurrence of unique and complex changes in the clonal architecture of the disease during the evolution. Mutations in STAG2, a gene of the cohesin complex, could play an important role in the progression of the disease. [FP7/2007-2013] nº306242-NGS-PTL; BIO/SA52/14; FEHH 2015-16 (MA) Disclosures Del Cañizo: Celgene: Membership on an entity's Board of Directors or advisory committees, Research Funding; Jansen-Cilag: Membership on an entity's Board of Directors or advisory committees, Research Funding; Arry: Membership on an entity's Board of Directors or advisory committees, Research Funding; Novartis: Membership on an entity's Board of Directors or advisory committees, Research Funding.
    Print ISSN: 0006-4971
    Electronic ISSN: 1528-0020
    Topics: Biology , Medicine
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
  • 4
    Publication Date: 2020-11-05
    Description: Large-scale next-generation sequencing (NGS) studies have suggested common patterns of co-occurrence or mutual exclusivity between genetic alterations in chronic lymphocytic leukemia (CLL). However, little is known about how most of these alterations cooperate to drive CLL pathogenesis, as well as the impact of these concurrencies in clinical outcome. In this regard, we investigated the clinical and biological impact of the co-occurrence of high-risk lesions such as del(11q)/ATM mutation and del(17p)/TP53 mutation by integrating NGS and CRISPR/Cas9 approaches. To address these questions, we first analyzed the mutational profile of 271 CLLs (17.3% del(11q); 10.7% del(17p)). The most frequently mutated genes were NOTCH1 (20%), TP53 (14%), SF3B1 (11%) and ATM (10%). Within del(11q), 32% showed TP53 alterations (53% biallelic; 47% monoallelic). Interestingly, patients harboring combined del(11q) and TP53 alterations by either mutation or deletion (del(11q) TP53ALT) exhibited significantly shorter overall survival (OS) than del(11q) CLLs without TP53 alterations (del(11q) TP53WT) and those TP53 altered without del(11q) (no del(11q) TP53ALT) (median 17 vs. 88, 36 months; P=0.0004, P=0.02). Conversely, we observed a significant lack of ATM mutations in CLLs with biallelic TP53 alterations (P=0.002) and a mutual exclusivity between biallelic TP53 and biallelic ATM losses (P=0.03)(Fig 1A). Based on the NGS results, we next used the CRISPR/Cas9 system to model monoallelic and biallelic ATM and TP53 loss in vitro. We generated isogenic HG3-Cas9 CLL-derived cell lines harboring monoallelic del(11q) (targeting 11q22.1/11q23.3 regions) and further loss-of-function mutations in ATM and/or TP53 to mimic all the possible combinations observed in our CLL cohort. By proliferation assays, we noted that the introduction of TP53 mutations increased the proliferation rates in both HG3WT and HG3-del(11q) cells. In contrast, the introduction of an ATM truncating mutation on the remaining allele of the HG3-del(11q) TP53MUT clone, suppressed this proliferative advantage, with growth rates comparable to those of HG3-del(11q). Accordingly, DNA content analysis by propidium iodide revealed that cells harboring biallelic ATM and TP53 loss also showed mitotic and cell cycle defects. To further evaluate the implications of these alterations in the clonal dynamics of CLL in vivo, we performed fluorescence-based clonal competition experiments by injecting these edited cell lines intravenously into NGS mice. First, we observed that HG3-TP53MUT cells outgrew HG3WT cells in spleen of xenotransplanted mice 14 days after injection (P
    Print ISSN: 0006-4971
    Electronic ISSN: 1528-0020
    Topics: Biology , Medicine
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 5
    ISSN: 1750-3841
    Source: Blackwell Publishing Journal Backfiles 1879-2005
    Topics: Agriculture, Forestry, Horticulture, Fishery, Domestic Science, Nutrition , Process Engineering, Biotechnology, Nutrition Technology
    Notes: The combined effect of salt, acetic acid, and pasteurization temperature on the retention of carotenoids in canned pickled carrots and green jalapeño peppers was studied by a central composite design. The results were analyzed by response surface methodology. The carotenoid standards were obtained by open column chromatography and the quantitation was done by HPLC. Only the main carotenoids were quantified: α- and β-carotene in carrots and α-, β-carotene, lutein, and violaxanthin in peppers. After analyzing the experimental results and the restrictions of the Mexican Regulations, 2% NaCl and 2% acetic acid concentrations were recommended. The optimal pasteurization conditions were 70 °C/12.45 min for carrots and 83 °C/5.2 min for peppers.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 6
    Electronic Resource
    Electronic Resource
    Amsterdam : Elsevier
    Meat Science 36 (1994), S. 365-370 
    ISSN: 0309-1740
    Source: Elsevier Journal Backfiles on ScienceDirect 1907 - 2002
    Topics: Agriculture, Forestry, Horticulture, Fishery, Domestic Science, Nutrition , Process Engineering, Biotechnology, Nutrition Technology
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 7
    Electronic Resource
    Electronic Resource
    Amsterdam : Elsevier
    International Journal of Intercultural Relations 14 (1990), S. 73-88 
    ISSN: 0147-1767
    Source: Elsevier Journal Backfiles on ScienceDirect 1907 - 2002
    Topics: Education , Psychology , Sociology , Economics
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 8
    Electronic Resource
    Electronic Resource
    Oxford, UK : Blackwell Science Ltd
    Molecular microbiology 39 (2001), S. 0 
    ISSN: 1365-2958
    Source: Blackwell Publishing Journal Backfiles 1879-2005
    Topics: Biology , Medicine
    Notes: Bacteriophage lambda is unable to grow vegetatively on Escherichia coli mutants defective in peptidyl-tRNA hydrolase (Pth) activity. Mutations which allow phage growth on the defective host have been located at regions named bar in the lambda genome. Expression of wild-type bar regions from plasmid constructs results in inhibition of protein synthesis and lethality to Pth-defective cells. Two of these wild-type bar regions, barI+ and barII+, contain minigenes with similar AUG–AUA–stop codon sequences preceded by different Shine–Dalgarno (SD) and spacer regions. The induced expression of barI+ and barII+ regions from plasmid constructs resulted in similar patterns of protein synthesis inhibition and cell growth arrest. Therefore, these deleterious effects may stem from translation of the transcripts containing the minigene two-codon ‘ORF’ (open reading frame). To test for this possibility, we assayed the effect of point mutations within the barI minigene. The results showed that a base pair substitution within the SD and the two-codon ‘ORF’ sequences affected protein synthesis and cell growth inhibition. In addition, mRNA stability was altered in each mutant. Higher mRNA stability correlated with the more toxic minigenes. We argue that this effect may be caused by ribosome protection of the mRNA in paused complexes as a result of deficiency of specific tRNA.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 9
    ISSN: 1750-3841
    Source: Blackwell Publishing Journal Backfiles 1879-2005
    Topics: Agriculture, Forestry, Horticulture, Fishery, Domestic Science, Nutrition , Process Engineering, Biotechnology, Nutrition Technology
    Notes: : Carrot root cores were cut off longitudinally and treated with NaCl (0.6 and 1.2 M) and/or acetic acid (1.33%, 2.67%, and 4%) solutions. The extractability of the carotenes was estimated. Similarly, carrot cores were also treated with some degrading enzymes (carbohydrases, lipases, and proteases) alone or in combination to study the effect of the tissue rupture or the hydrolysis of possible complexes or interactions between carotenes and other components on the carotene extractability. The results showed that acetic acid increased the extractability of α- and β carotenes up to 99.8% and 94.6%, respectively, at a 4% acid concentration compared with the samples without any treatment. This increase was directly proportional to the acid concentration. An increase in extractability was also observed for NaCl, although the increases were not as high as in the previous case with values of 49% and 41.4% for α- and β-carotenes respectively at a 0.6 M concentration. The study of microstructural changes and extractability revealed that the enzymatic treatments could have broken some carotene complexes and interactions and altered the carbohydrate matrix structure, increasing to a certain extent the extractability of carotenes. It can be concluded then that pickling with 4% acetic acid is a good method to increase the extractability of α- and β-carotenes.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 10
    ISSN: 1365-2958
    Source: Blackwell Publishing Journal Backfiles 1879-2005
    Topics: Biology , Medicine
    Notes: To analyse the mechanism by which rare codons near the initiation codon inhibit cell growth and protein synthesis, we used the bacteriophage lambda int gene or early codon substitution derivatives. The lambda int gene has a high frequency of rare ATA, AGA and AGG codons; two of them (AGA AGG) located at positions 3 and 4 of the int open reading frame (ORF). Escherichia coli pth (rap) cells, which are defective in peptidyl-tRNA hydrolase (Pth) activity, are more susceptible to the inhibitory effects of int expression as compared with wild-type cells. Cell growth and Int protein synthesis were enhanced by overexpression of Pth and tRNAArg4 cognate to AGG and AGA but not of tRNAIle2a specific for ATA. The increase of Int protein synthesis also takes place when the rare arginine codons AGA and AGG at positions 3 and 4 are changed to common arginine CGT or lysine AAA codons but not to rare isoleucine ATA codons. In addition, overexpression of int in Pth defective cells provokes accumulation of peptidyl-tRNAArg4 in the soluble fraction. Therefore, cell growth and Int synthesis inhibition may be due to ribosome stalling and premature release of peptidyl-tRNAArg4 from the ribosome at the rare arginine codons of the first tandem, which leads to cell starvation for the specific tRNA.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...