ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

You have 0 saved results.
Mark results and click the "Add To Watchlist" link in order to add them to this list.
feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Publication Date: 2011-08-19
    Description: Viking lander camera images of the Sun were used to compute atmospheric optical depth at two sites over a period of 1 to 1/3 martian years. The complete set of 1044 optical depth determinations is presented in graphical and tabular form. Error estimates are presented in detail. Otpical depths in the morning (AM) are generally larger than in the afternoon (PM). The AM-PM differences are ascribed to condensation of water vapor into atmospheric ice aerosols at night and their evaporation in midday. A smoothed time series of these differences shows several seasonal peaks. These are simulated using a one-dimensional radiative convective model which predicts martial atmospheric temperature profiles. A calculation combinig these profiles with water vapor measurements from the Mars Atmospheric Water Detector is used to predict when the diurnal variations of water condensation should occur. The model reproduces a majority of the observed peaks and shows the factors influencing the process. Diurnal variation of condensation is shown to peak when the latitude and season combine to warm the atmosphere to the optimum temperature, cool enough to condense vapor at night and warm enough to cause evaporation at midday.
    Keywords: LUNAR AND PLANETARY EXPLORATION
    Type: Icarus (ISSN 0019-1035); 79; 159-189
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2011-08-23
    Description: Pulses of CO2 injected into the martian atmosphere more recently than 4 Ga can place the atmosphere into a stable, higher pressure, warmer greenhouse state. One to two bar pulses of CO2 added to the atmosphere during the past several billion years are sufficient to raise global mean temperatures above 240 or 250 K for tens to hundreds of millions of years, even when accounting for CO2 condensation. Over time, the added CO2 is lost to carbonates, the atmosphere collapses and returns to its buffered state. A substantial amount of water could be transported during the greenhouse periods from the surface of a frozen body of water created by outflow channel discharges to higher elevations, despite global temperatures well below freezing. This water, precipitated as snow, could ultimately form fluvial valleys if deposition sites are associated with localized heat sources, such as magmatic intrusions or volcanoes. Thus, if outflow channel discharges were accompanied by the release of sufficient quantities of CO2, a limited hydrological cycle could have resulted that would have been capable of producing geomorphic change sufficient for fluvial erosion and valley formation. Glacial or periglacial landforms would also be a consequence of such a mechanism.
    Keywords: Lunar and Planetary Science and Exploration
    Type: ICARUS (ISSN 0019-1035); Volume 130; 68-86; IS975802
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2011-08-19
    Description: The Martian southern hemisphere atmospheric water vapor column abundance measurements reported agree with Viking Orbiter atmospheric water detectors during early southern spring and southern autumnal equinox; profiles obtained in southern mid- and late summer, however, indicate the presence of twice as much water both in the southern hemisphere and planetwide. This discrepancy is accounted for by the high optical depths created by two global dust storms during the Viking year, while the present observations were obtained in the case of the relatively dust-free atmosphere of the 1988-1989 opposition.
    Keywords: LUNAR AND PLANETARY EXPLORATION
    Type: Icarus (ISSN 0019-1035); 90; 205-213
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
    facet.materialart.
    Unknown
    In:  Other Sources
    Publication Date: 2011-08-19
    Description: The composition of the primitive Martian atmosphere and its development into the present environment are described. The primitive atmosphere consisted of water vapor, carbon dioxide, and nitrogen released from rocks; the greenhouse effect which maintained the surface temperature above the frost point of water is examined. Volcanic activity reduced the greenhouse effect and along with CO2 removal from the atmosphere caused a lowering of the planet temperature. The global circulation patterns on earth and Mars are compared; the similarities in the circulation patterns and Mars' seasonal variations are studied. The carbon dioxide and water cycles on Mars are analyzed; the carbon dioxide cycle determines seasonal variations in surface pressure and the behavior of the water cycle. The behavior of the atmospheric dust and the relationship between the seasonal dust cycle and Hadley circulation are investigated. The periodic variations in the three orbital parameters of Mars, which affect the climate by changing the seasonal and latitudinal distribution of incoming solar energy are discussed
    Keywords: LUNAR AND PLANETARY EXPLORATION
    Type: Scientific American (ISSN 0036-8733); 254; 54-62
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 5
    Publication Date: 2011-08-24
    Description: The Martian potential for supporting life is considered in this discussion of scientific exploration objectives related to exobiology, climatology, and geology. Two significant areas of research are identified - the habitability of Mars and the general relationship between planetary parameters and life - and an exploration strategy is developed. Four phases of human exploration are determined including: (1) precursor missions for evaluating the Martian environment; (2) emplacement missions for studying specific landing sites; (3) consolidation missions for the development of permanent exploratory-mission bases; and (4) a final utilization phase in which global Martian exploration is conducted. The logistical considerations related to each phase are discussed with specific references to types of vehicles and technology required.
    Keywords: ASTRONAUTICS (GENERAL)
    Type: Advances in Space Research (ISSN 0273-1177); 12; 4, 19
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 6
    facet.materialart.
    Unknown
    In:  Other Sources
    Publication Date: 2011-08-19
    Description: A recent proposal that much of the outgassed CO2 on Mars is tied up in the planet's crust in the form of carbonate mineral is discussed. According to this hypothesis, carbonate formation on Mars continued after open bodies of liquid water became unstable. A consequence of the hypothesis is that, in the absence of a recycling mechanism for CO2, the surface pressure on Mars will monotonically decrease until it reaches the minimum atmospheric overburden pressure required for liquid water to form. The theory explains Mars' low surface pressure, and also implies that the climate of Mars has evolved linearly over geologic time, rather than cyclically.
    Keywords: LUNAR AND PLANETARY EXPLORATION
    Type: Nature (ISSN 0028-0836); 318; 599
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 7
    Publication Date: 2013-08-31
    Description: Evidence for the presence of liquid water early in Mars history continues to accumulate. The most recent evidence for liquid water being pervasive early in Mars history is the discoveries of sulfate and gypsum layers by the Mars Exploration Rovers and Mars Express. However, the presence of liquid water at the surface very early in Mars history presents a conundrum. The early sun was most likely approximately 75% fainter than it is today. About 65-70 degrees of greenhouse warming is needed to bring surface temperatures to the melting point of water. To date climate models have not been able to produce a continuously warm and wet early Mars. This may be a good thing as there is morphological and mineralogical evidence that the warm and wet period had to be relatively short and episodic. The rates of erosion appear to correlate with the rate at which Mars was impacted thus an alternate possibility is transient warm and wet conditions initiated by large impacts. It is widely accepted that even relatively small impacts (approximately 10 km) have altered the past climate of Earth to such an extent as to cause mass extinctions. Mars has been impacted with a similar distribution of objects. The impact record at Mars is preserved in the abundance of observable craters on it surface. Impact induced climate change must have occurred on Mars.
    Keywords: Lunar and Planetary Science and Exploration
    Type: Workshop on The Role of Volatile and Atmospheres on Martian Impact Craters; LPI-Contrib-1273
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 8
    Publication Date: 2013-08-31
    Description: The most widely used thermal inertia data for Mars assumes the atmospheric contribution is constant and equal to 2 percent of the maximum solar insolation. Haberle and Jakosky investigated the effect of including a dusty CO2 atmosphere and sensible heat exchange with the surface on thermal inertia. We recently utilized Haberle and Jakosky's coupled surface-atmosphere model to investigate the effects of such an atmosphere on the thermally derived albedo. The thermally derived albedo is the albedo which, together with the thermal inertia, provides model surface temperatures which best match the observed temperatures. New maps are presented of thermal inertia and thermally derived albedo which incorporate dust opacities derived from IRTM data.
    Keywords: LUNAR AND PLANETARY EXPLORATION
    Type: Lunar and Planetary Inst., The Twenty-Fifth Lunar and Planetary Science Conference. Part 2: H-O; p 517-518
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 9
    Publication Date: 2013-08-31
    Description: There are several lines of evidence that suggest early Mars was warmer and wetter than it is at present. Perhaps the most convincing of these are the valley networks and degraded craters that characterize much of the ancient terrains. In both cases, fluvial activity associated with liquid water is believed to be involved. Thus, Mars appears to have had a warmer climate early in its history than it does today. How much warmer is not clear, but a common perception has been that global mean surface temperatures must have been near freezing - almost 55 K warmer than at present. The most plausible way to increase surface temperatures is through the greenhouse effect, and the most plausible greenhouse gas is CO2. Pollack et al. estimate that in the presence of the faint young Sun, the early Martian atmosphere would have to contain almost 5 bar of CO2 to raise the mean surface temperature up to the freezing level; only 1 bar would be required if the fluvial features were formed near the calculations now appear to be wrong since Kasting showed that CO2 will condense in the atmosphere at these pressures and that this greatly reduces the greenhouse effect of a pure CO2 atmosphere. He suggested that alternative greenhouse gases such as CH4 or NH3, are required. The early Mars dilemma is approached from a slightly different point of view. In particular, a model for the evolution of CO2 on Mars that draws upon published processes that affect such evolution was constructed. Thus, the model accounts for the variation of solar luminosity with time, the greenhouse effect, regolith uptake, polar cap formation, escape, and weathering.
    Keywords: LUNAR AND PLANETARY EXPLORATION
    Type: Lunar and Planetary Inst., Workshop on Early Mars: How Warm and How Wet?, Part 1; p 13-14
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 10
    Publication Date: 2013-08-31
    Description: Researchers investigated the free convective regime for the Martian atmospheric boundary layer (ABL). Researchers generalized Schumann's model describing horizontal fluctuations and mean vertical gradients occurring during free convection to include convection driven by water vapor gradients and to include the effects of circulation above both aerodynamically smooth and rough surfaces. Applying the model to Mars, researchers found that nearly all the resistance to sensible and latent heat transfer in the ABL occurs within the thin interfacial sublayer at the surface. Free convection is found to readily occur at low pressures and high temperatures when surface ice is present. At 7 mb, the ABL should freely convect whenever the mean windspeed at the top of the surface layer drops below about 2.5 m s(-1) and surface temperatures exceed 250 K. Mean horizontal fluctuations within the surface layer are found to be as high as 3 m (-1) for windspeed, 0.5 K for temperature, and 10 (-4) kg m (-3) for water vapor density. Airflow over surfaces similar to the Antarctic Polar Plateau was found to be aerodynamically smooth on Mars during free convection for all pressures between 6 and 1000 mb, while surfaces with z sub o approx. equals 1 cm are aerodynamically rough over this pressure range.
    Keywords: LUNAR AND PLANETARY EXPLORATION
    Type: NASA, Washington, Reports of Planetary Geology and Geophysics Program, 1990; p 199-200
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...