ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

You have 0 saved results.
Mark results and click the "Add To Watchlist" link in order to add them to this list.
feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
Collection
Keywords
  • 1
    Electronic Resource
    Electronic Resource
    Springer
    Bulletin of volcanology 61 (1999), S. 194-206 
    ISSN: 1432-0819
    Keywords: Key words Lineated sheet flow ; Submarine lava morphology ; Sea-floor eruptions ; Mid-ocean-ridge volcanism
    Source: Springer Online Journal Archives 1860-2000
    Topics: Geosciences
    Notes: Abstract  Lineated sheet flows are flat-lying, glassy lava flows characterized by a regular surface pattern of parallel grooves or furrows aligned with the flow direction. They are unique to the submarine environment. We propose that the lineations are developed within the collapsed interiors of partially ponded lobate sheet flows that initially inflate and then drain out during emplacement. During lava drainout, the original lobate crust founders and a new crust begins to grow on the subsiding lava surface. Lineated flow texture is created where molten lava emerges laterally from beneath a growing crust. The lineations are formed by raking of the emerging lava surface by irregularities on the bottom edge of the crust and are preserved owing to rapid chilling by seawater. Therefore, lineated sheet flows are the product of a specific sequence of events over a short period of time during the course of a deep submarine eruption.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    ISSN: 1476-4687
    Source: Nature Archives 1869 - 2009
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Notes: [Auszug] Three-quarters of the Earth's volcanic activity is submarine, located mostly along the mid-ocean ridges, with the remainder along intraoceanic arcs and hotspots at depths varying from greater than 4,000 m to near the sea surface. Most observations and sampling of submarine eruptions ...
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    Electronic Resource
    Electronic Resource
    [s.l.] : Macmillian Magazines Ltd.
    Nature 412 (2001), S. 727-729 
    ISSN: 1476-4687
    Source: Nature Archives 1869 - 2009
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Notes: [Auszug] Our understanding of submarine volcanic eruptions has improved substantially in the past decade owing to the recent ability to remotely detect such events and to then respond rapidly with synoptic surveys and sampling at the eruption site. But these data are necessarily limited to observations ...
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
    Electronic Resource
    Electronic Resource
    Oxford, UK : Blackwell Publishing Ltd
    Sedimentology 26 (1979), S. 0 
    ISSN: 1365-3091
    Source: Blackwell Publishing Journal Backfiles 1879-2005
    Topics: Geosciences
    Notes: A piston core (RC16-57) raised from the northwestern flank of the Ceará Rise contained several turbidites up to 62 cm thick with grain sizes ranging from clay to coarse sand. These turbidites were similar in composition to terrigenous turbidites found throughout the Amazon Cone, continental rise and abyssal plains of the western Equatorial Atlantic. The core site (RC16-57) on the Ceará Rise, however, was 156 m above the level of the adjacent Amazon Cone (the source of the turbidites). Thus the turbidity currents which deposited these beds apparently had to flow upslope for 17 km to reach the core site. Sub-bottom reflectors observed on a 3.5 kHz echogram that extended from the Amazon Cone upslope past the core site suggested that these and deeper turbidites extended from the cone up the rise flank to distances of up to 40 km from the cone/rise boundary and to elevations up to 400 m above the level of the cone at the base of the rise. An equally plausible explanation could be that the turbidity currents that deposited these sediments were in excess of 400 m in thickness and thus would not require uphill flow to reach their observed location on the rise flank. The absence of terrigenous turbidites from the bases of topographic knolls on the continental rise and abyssal plains throughout the western Equatorial Atlantic indicated, however, that turbidity currents were normally less than 100 m thick and hence would seem to rule out this explanation. The average gradient of the rise flank in this region was about 1 : 1000 (\sim 0.5°).
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 5
    Electronic Resource
    Electronic Resource
    [s.l.] : Nature Publishing Group
    Nature 350 (1991), S. 416-418 
    ISSN: 1476-4687
    Source: Nature Archives 1869 - 2009
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Notes: [Auszug] The lavas that were erupted during the 1980s occur as a series of pillow mounds and ridges between 45á°00.5' N and 45á°09.5' N along the northern Cleft segment (Fig. 1). The evidence for the recent eruption of these lavas was first discovered through a discrepancy between ...
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 6
    Electronic Resource
    Electronic Resource
    Springer
    Geo-marine letters 5 (1985), S. 99-104 
    ISSN: 1432-1157
    Source: Springer Online Journal Archives 1860-2000
    Topics: Geosciences
    Notes: Abstract A dissected terrain resembling a shelf-edge canyon system with individual canyons up to 100 m in relief, 3 km in width, and 10 km in length is found along the south flank of the Cascadia Channel within the central Blanco Transform zone. The channels apparently formed from a combination of downcutting from turbidity currents off the Blanco Ridge and from backcutting due to mass-wasting. The relationships between the transform tectonics and the formation of the canyon are presented in a model which proposes both a direct link via triggering of slides from earthquakes and an indirect link associated with lowering the local base level of Cascadia Channel, thalweg downcutting, and wall-steepening leading to increased mass-wasting.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 7
    Electronic Resource
    Electronic Resource
    Springer
    Bulletin of volcanology 54 (1992), S. 447-458 
    ISSN: 1432-0819
    Source: Springer Online Journal Archives 1860-2000
    Topics: Geosciences
    Notes: Abstract A seafloor lava field was mapped within the summit caldera of Axial Volcano, Juan de Fuca Ridge, using SeaMARC I sidescan sonor and submersible observations. By analogy with similar subaerial features, we infer that several volcanic seafloor features here formed by the process of lava flow inflation. Flow inflation occurs within tube-fed lava flows when lava continues to be supplied to the interior of a flow that has ceased advancing, thus uplifting the flow's rigid surface and creating a suite of characteristic surface structures. Inflated lavas require a feeder lava tube or tube system connected to a remote lava source, and therefore we infer that inflated submarine lava flows contain lava tubes. Inflated flow features identified from sidescan sonar images elsewhere on Axial Volcano and within the axial valley of the southern Juan de Fuca ridge suggest that flow inflation is a widespread submarine volcanic process.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 8
    Electronic Resource
    Electronic Resource
    Springer
    Marine geophysical researches 13 (1991), S. 203-208 
    ISSN: 1573-0581
    Keywords: Blanco Transform ; divergent wrench-fault ; earthquake ; b-value ; seismic moment ; fault length
    Source: Springer Online Journal Archives 1860-2000
    Topics: Geosciences , Physics
    Notes: Abstract Morphologic studies of an oceanic transform, the Blanco Transform Fault Zone (BTFZ), have shown it to consist of a series of extensional basins that offset the major strike-slip faults. The largest of the extensional basins, the Cascadia Depression, effectively divides the transform into a northwest segment, composed of several relatively short strike-slip faults, and a southeast segment dominated by fewer, longer faults. The regional seismicity distribution (m b ≥4.0) and frequency-magnitude relationships (b-values) of the BTFZ show that the largest magnitude events are located on the southeast segment. Furthermore, estimates of the cumulative seismic moment release and seismic moment release rate along the southeast segment are significantly greater than that of the northwest segment. These observations suggest that slip along the southeast segment is accommodated by a greater number of large magnitude earthquakes. Comparison of the seismic moment rate, derived from empirical estimates, with the seismic moment rate determined from plate motion constraints suggests a difference in the seismic coupling strength between the segments. This difference in coupling may partially explain the disparity in earthquake size distribution. However, the results appear to confirm the relation between earthquake size and fault length, observed along continental strike-slip faults, for this oceanic transform.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 9
    ISSN: 1573-0581
    Keywords: Blanco transform fault zone ; earthquakes ; ridge formation ; submersible
    Source: Springer Online Journal Archives 1860-2000
    Topics: Geosciences , Physics
    Notes: Abstract Bathymetric, hydro-acoustic, seismic, submersible, and gravity data are used to investigate the active tectonics of the eastern Blanco Transform Fault Zone (BTFZ). The eastern BTFZ is dominated by the ∼150 km long transform-parallel Blanco Ridge (BR) which is a right-lateral strike-slip fault bordered to the east and west by the Gorda and Cascadia Depressions. Acoustic locations, fault-parameter information, and slip vector estimates of 43 earthquakes (M w≥3.8) that occurred along the eastern BTFZ over the last 5 years reveal that the Blanco Ridge is a high-angle right-lateral strike-slip fault, with a small component of dip-slip motion, where the Juan de Fuca plate is the hanging wall relative to the Pacific plate. Furthermore, the Cascadia and Gorda basins are undergoing normal faulting with extension predominantly oblique to the transform trend. Seafloor submersible observations agree with previous hypotheses that the active transform fault trace is the elongate basin that runs the length of the BR summit. Brecciated and undeformed basalt, diabase, and gabbro samples were collected at the four submersible survey sites along the Blanco Ridge. These petrologic samples indicate the Blanco Ridge is composed of an ocean crustal sequence that has been uplifted and highly fractured. The petrologic samples also appear to show an increase in elevation of the crustal section from east to west along the Blanco Ridge, with gabbros exposed at a shallower depth farther west along the southern (Pacific plate side) BR ridge flank. Further supporting evidence for BR uplift exists in the seismic reflection profiles across the BR showing uplift of turbidite sequences along the north and south ridge base, and gravity and magnetics profiles that indicate possible basement uplift and a low-density zone centered on the ridge's Pacific plate side. The BR formation mechanism preferred here is first, uplift achieved partially through strike-slip motion (with a small dip-slip component). Second, seawater penetration along the fault into the lower crust upper mantle, which then enhanced formation and intrusion of a mantle-derived serpentinized-peridotite diapir into the shallow ocean crust, causing further uplift along the fault.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 10
    Electronic Resource
    Electronic Resource
    Springer
    Marine geophysical researches 14 (1992), S. 25-45 
    ISSN: 1573-0581
    Keywords: Blanco Transform Fault Zone ; transform fault zone ; pull-apart basin ; propagating rift ; Juan de Fuca
    Source: Springer Online Journal Archives 1860-2000
    Topics: Geosciences , Physics
    Notes: Abstract The right-lateral Blanco Transform Fault Zone (BTFZ) offsets the Gorda and the Juan de Fuca Ridges along a 350 km long complex zone of ridges and right-stepping depressions. The overall geometry of the BTFZ is similar to several other oceanic transform fault zones located along the East Pacific Rise (e.g., Siquieros) and to divergent wrench faults on continents; i.e., long strike-slip master faults offset by extensional basins. These depressions have formed over the past 5 Ma as the result of continual reorientation of the BTFZ in response to changes in plate motion. The central depression (Cascadia Depression) is flanked by symmetrically distributed, inward-facing back-tilted fault blocks. It is probably a short seafloor spreading center that has been operating since about 5 Ma, when a southward propagating rift failed to ‘kill’ the last remnant of a ridge segment. The Gorda Depression on the eastern end of the BTFZ may have initially formed as the result of a similar occurrence involving a northward propagating rift on the Gorda ridge system. Several of the smaller basins (East Blanco, Surveyor and Gorda) morphologically appear to be oceanic analogues of continental pull-apart basins. This would imply diffuse extension rather than the discrete neovolcanic zone associated with a typical seafloor spreading center. The basins along the western half of the BTFZ have probably formed within the last few hundred thousands years, possibly as the result of a minor change in the Juan de Fuca/Pacific relative motion.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...