ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

You have 0 saved results.
Mark results and click the "Add To Watchlist" link in order to add them to this list.
feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Publication Date: 2019-10-24
    Description: During opening of a new ocean magma intrudes into the surrounding sedimentary basins. Heat provided by the intrusions matures the host rock creating metamorphic aureoles potentially releasing large amounts of hydrocarbons. These hydrocarbons may migrate to the seafloor in hydrothermal vent complexes in sufficient volumes to trigger global warming, e.g. during the Paleocene Eocene Thermal Maximum (PETM). Mound structures at the top of buried hydrothermal vent complexes observed in seismic data off Norway were previously interpreted as mud volcanoes and the amount of released hydrocarbon was estimated based on this interpretation. Here, we present new geophysical and geochemical data from the Gulf of California suggesting that such mound structures could in fact be edifices constructed by the growth of black-smoker type chimneys rather than mud volcanoes. We have evidence for two buried and one active hydrothermal vent system outside the rift axis. The vent releases several hundred degrees Celsius hot fluids containing abundant methane, mid-ocean-ridge-basalt (MORB)-type helium, and precipitating solids up to 300 m high into the water column. Our observations challenge the idea that methane is emitted slowly from rift-related vents. The association of large amounts of methane with hydrothermal fluids that enter the water column at high pressure and temperature provides an efficient mechanism to transport hydrocarbons into the water column and atmosphere, lending support to the hypothesis that rapid climate change such as during the PETM can be triggered by magmatic intrusions into organic-rich sedimentary basins.
    Type: Article , PeerReviewed
    Format: text
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2024-02-07
    Description: The Christiana-Santorini-Kolumbo volcanic field (CSKVF) in the Aegean Sea is one of the most active volcano-tectonic lineaments in Europe. Santorini has been an iconic site in volcanology and archaeology since the 19th century, and the onshore volcanic products of Santorini are one of the best-studied volcanic sequences worldwide. However, little is known about the chronology of volcanic activity of the adjacent submarine Kolumbo volcano, and even less is known about the Christiana volcanic island. In this study, we exploit a dense array of high-resolution marine seismic reflection profiles to link the marine stratigraphy to onshore volcanic sequences and present the first consistent chronological framework for the CSKVF, enabling a detailed reconstruction of the evolution of the volcanic rift system in time and space. We identify four main phases of volcanic activity, which initiated in the Pliocene with the formation of the Christiana volcano (phase 1). The formation of the current southwest-northeast–trending rift system (phase 2) was associated with the evolution of two distinct volcanic centers, the newly discovered Poseidon center and the early Kolumbo volcano. Phase 3 saw a period of widespread volcanic activity throughout the entire rift. The ongoing phase 4 is confined to the Santorini caldera and Kolumbo volcano. Our study highlights the fundamental tectonic control on magma emplacement and shows that the CSKVF evolved from a volcanic field with local centers that matured only recently to form the vast Santorini edifice.
    Type: Article , PeerReviewed , info:eu-repo/semantics/article
    Format: text
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...