ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

You have 0 saved results.
Mark results and click the "Add To Watchlist" link in order to add them to this list.
feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Publication Date: 1990-12-14
    Description: The Kangmar metamorphic-igneous complex is one of the most accessible examples of an enigmatic group of gneiss domes (the North Himalayan belt) that lies midway between the Greater Himalaya and the Indus-Tsangpo suture in southern Tibet. Structural analysis suggests that the domal structure formed as a consequence of extensional deformation, much like the Tertiary metamorphic core complexes in the North American Cordillera. Unlike its North American counterparts, the Kangmar dome developed in an entirely convergent tectonic setting. The documentation of metamorphic core complexes in the Himalayan orogen supports the emerging concept that extensional processes may play an important role in the evolution of compressional mountain belts.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Chen, Z -- Liu, Y -- Hodges, K V -- Burchfiel, B C -- Royden, L H -- Deng, C -- New York, N.Y. -- Science. 1990 Dec 14;250(4987):1552-6.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/17818283" target="_blank"〉PubMed〈/a〉
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2008-08-23
    Description: The geological evolution of the Tibetan plateau is best viewed in a context broader than the India-Eurasia collision zone. After collision about 50 million years ago, crust was shortened in western and central Tibet, while large fragments of lithosphere moved from the collision zone toward areas of trench rollback in the western Pacific and Indonesia. Cessation of rapid Pacific trench migration ( approximately 15 to 20 million years ago) coincided with a slowing of fragment extrusion beyond the plateau and probably contributed to the onset of rapid surface uplift and crustal thickening in eastern Tibet. The latter appear to result from rapid eastward flow of the deep crust, probably within crustal channels imaged seismically beneath eastern Tibet. These events mark a transition to the modern structural system that currently accommodates deformation within Tibet.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Royden, Leigh H -- Burchfiel, B Clark -- van der Hilst, Robert D -- New York, N.Y. -- Science. 2008 Aug 22;321(5892):1054-8. doi: 10.1126/science.1155371.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Earth, Atmospheric, and Planetary Sciences, Massachusetts Institute of Technology, Cambridge, MA 01890, USA. lhroyden@mit.edu〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/18719275" target="_blank"〉PubMed〈/a〉
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 1997-05-02
    Description: Field observations and satellite geodesy indicate that little crustal shortening has occurred along the central to southern margin of the eastern Tibetan plateau since about 4 million years ago. Instead, central eastern Tibet has been nearly stationary relative to southeastern China, southeastern Tibet has rotated clockwise without major crustal shortening, and the crust along portions of the eastern plateau margin has been extended. Modeling suggests that these phenomena are the result of continental convergence where the lower crust is so weak that upper crustal deformation is decoupled from the motion of the underlying mantle. This model also predicts east-west extension on the high plateau without convective removal of Tibetan lithosphere and without eastward movement of the crust east of the plateau.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Royden -- Burchfiel -- King -- Wang -- Chen -- Shen -- Liu -- New York, N.Y. -- Science. 1997 May 2;276(5313):788-90.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉L. H. Royden, B. C. Burchfiel, R. W. King, E. Wang, Department of Earth, Atmospheric, and Planetary Sciences, Massachusetts Institute of Technology, Cambridge, MA 02139, USA. Z. Chen, F. Shen, Y. Liu, Chengdu Institute of Geology and Mineral Resources, Chengdu, China.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/9115202" target="_blank"〉PubMed〈/a〉
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
    Publication Date: 1992-11-27
    Description: The South Tibetan detachment system separates the high-grade metamorphic core of the Himalayan orogen from its weakly metamorphosed suprastructure. It is thought to have developed in response to differences in gravitational potential energy produced by crustal thickening across the mountain front. Geochronologic data from the Rongbuk Valley, north of Qomolangma (Mount Everest) in southern Tibet, demonstrate that at least one segment of the detachment system was active between 19 and 22 million years ago, an interval characterized by large-scale crustal thickening at lower structural levels. These data suggest that decoupling between an extending upper crust and a converging lower crust was an important aspect of Himalayan tectonics in Miocene time.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Hodges, K V -- Parrish, R R -- Housh, T B -- Lux, D R -- Burchfiel, B C -- Royden, L H -- Chen, Z -- New York, N.Y. -- Science. 1992 Nov 27;258(5087):1466-70.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/17755108" target="_blank"〉PubMed〈/a〉
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 5
    Publication Date: 1989-03-03
    Description: 〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Burchfiel, B C -- New York, N.Y. -- Science. 1989 Mar 3;243(4895):1221-2.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/17799905" target="_blank"〉PubMed〈/a〉
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 6
    Publication Date: 1987-01-16
    Description: A reconnaissance expedition across the northern margin of the Tibetan plateau revealed evidence of a late Cenozoic northward progression of the locus of crustal shortening and, therefore, of a northward growth of the area encompassed by the plateau. Active reverse faults crop out at the foot of the Altyn Tagh, on the northern edge of the plateau, and at the bases of several ranges within the Altyn Tagh and Kunlun, where the elevations of the neighboring basins are less than 4000 meters. Farther south, where elevations are higher, there was no evidence of recent faulting, but late Cenozoic rock in the Ayak Kum Kol basin has been strongly folded. South of this basin, Ulugh Muztagh, apparently the highest mountain in the eastern Kunlun, is underlain by late Miocene, tourmaline-bearing and two-mica granite. These rocks suggest that thickening of continental crust had begun in this area by late Miocene time. Overlying quartz-sanidine welded tuffs of Pliocene age imply that uplift and erosion occurred between Miocene and Pliocene time, but with little subsequent erosion. In addition, we found an east-west trending belt of mafic and ultramafic rock that probably marks a suture of a crustal fragment with southern Asia in Triassic or more recent time.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Molnar, P -- Burchfiel, B C -- Ziyun, Z -- K'uangyi, L -- Shuji, W -- Minmin, H -- New York, N.Y. -- Science. 1987 Jan 16;235(4786):299-305.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/17750385" target="_blank"〉PubMed〈/a〉
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...