ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

You have 0 saved results.
Mark results and click the "Add To Watchlist" link in order to add them to this list.
feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • 2010-2014  (19)
  • 1
    Publication Date: 2012-12-19
    Description: Although Australia has been the subject of a wide range of seismological studies, these have concentrated on specific features of the continent at crustal scales and on the broad scale features in the mantle. The Australian Seismological Reference Model (AuSREM) is designed to bring together the existing information, and provide a synthesis in the form of a 3-D model that can provide the basis for future refinement from more detailed studies. Extensive studies in the last few decades provide good coverage for much of the continent, and the crustal model builds on the various data sources to produce a representative model that captures the major features of the continental structure and provides a basis for a broad range of further studies. The model is grid based with a 0.5° sampling in latitude and longitude, and is designed to be fully interpolable, so that properties can be extracted at any point. The crustal structure is built from five-layer representations of refraction and receiver function studies and tomographic information. The AuSREM crustal model is available at 1 km intervals. The crustal component makes use of prior compilations of sediment thicknesses, with cross checks against recent reflection profiling, and provides P and S wavespeed distributions through the crust. The primary information for P wavespeed comes from refraction profiles, for S wavespeed from receiver function studies. We are also able to use the results of ambient noise tomography to link the point observations into national coverage. Density values are derived using results from gravity interpretations with an empirical relation between P wavespeed and density. AuSREM is able to build on a new map of depth to Moho, which has been created using all available information including Moho picks from over 12 000 km of full crustal profiling across the continent. The crustal component of AuSREM provides a representative model that should be useful for modelling of seismic wave propagation and calculation of crustal corrections for tomography. Other applications include gravity studies and dynamic topography at the continental scale.
    Print ISSN: 0956-540X
    Electronic ISSN: 1365-246X
    Topics: Geosciences
    Published by Oxford University Press on behalf of The Deutsche Geophysikalische Gesellschaft (DGG) and the Royal Astronomical Society (RAS).
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2014-08-24
    Description: In the western Pacific, high-frequency seismic energy is carried to very great distances from the source. The Po and So phases with observed seismic velocities characteristic of the mantle lithosphere have complex and elongated waveforms that are well explained by a model of stochastic heterogeneity. However, in the eastern part of the Pacific Basin equivalent paths show muted Po and weak, or missing, So . Once established, it is hard to eliminate such guided Po and So energy in the mantle lithosphere by purely structural effects. Even sharp changes in lithospheric thickness or complex transitions at fracture zones only weaken the mantle ducted wave trains, but Po and So remain distinct. In contrast, the effect of attenuation is much more severe and can lead to suppression of the So phase to below the noise level after passage of a few hundred kilometres. The differing characteristics of Po and So across the Pacific can therefore be related directly to the thermal state via the enhanced attenuation in hotter regions, such as the spreading ridges and backarc regions.
    Keywords: Seismology
    Print ISSN: 0956-540X
    Electronic ISSN: 1365-246X
    Topics: Geosciences
    Published by Oxford University Press on behalf of The Deutsche Geophysikalische Gesellschaft (DGG) and the Royal Astronomical Society (RAS).
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2014-12-05
    Description: This study explores the full 3D earthquake location for the Australian continent, exploiting the recent 3D Australian Seismological Reference Model (AuSREM). Seismic velocities from AuSREM were used as input to precompute finely spaced P - and S -travel-time grids for each station in the Australian National Seismograph Network using the multistage fast marching method. Travel times from anywhere in the grid to the corresponding station can then be computed by interpolation. The location search using these travel times is based on matching observed and computed arrival times using the neighborhood algorithm. All computations involved can be performed in practical time frames on a single processor computer. The performance of the 3D approach relative to location using the 1D global ak135 velocity model was assessed by locating a set of recent earthquakes. The arrival-time residuals for P and S arrivals are significantly smaller when using the 3D AuSREM model. The improvements over ak135 are especially large in the 10°–18° distance range, in which a distance bias is strongly reduced and for those paths where the ak135 residuals are large. A small set of six ground-truth events was used to assess to what extent the reduction in travel-time residuals leads to better absolute location accuracy. The 3D location offset from the ground-truth position is typically half that of the ak135 offset. The patterns of offsets suggest that the already fast mantle wavespeeds in western Australia need to be even faster than in AuSREM.
    Print ISSN: 0037-1106
    Electronic ISSN: 1943-3573
    Topics: Geosciences , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
    Publication Date: 2014-06-28
    Description: Starting from the hypocentre, the point of initiation of seismic energy, we seek to estimate the subsequent trajectory of the points of emission of high-frequency energy in 3-D, which we term the ‘evocentres’. We track these evocentres as a function of time by energy stacking for putative points on a 3-D grid around the hypocentre that is expanded as time progresses, selecting the location of maximum energy release as a function of time. The spatial resolution in the neighbourhood of a target point can be simply estimated by spatial mapping using the properties of isochrons from the stations. The mapping of a seismogram segment to space is by inverse slowness, and thus more distant stations have a broader spatial contribution. As in hypocentral estimation, the inclusion of a wide azimuthal distribution of stations significantly enhances 3-D capability. We illustrate this approach to tracking source evolution in 3-D by considering two major earthquakes, the 2007 M w 8.1 Solomons islands event that ruptured across a plate boundary and the 2013 M w 8.3 event 610 km beneath the Sea of Okhotsk. In each case we are able to provide estimates of the evolution of high-frequency energy that tally well with alternative schemes, but also to provide information on the 3-D characteristics that is not available from backprojection from distant networks. We are able to demonstrate that the major characteristics of event rupture can be captured using just a few azimuthally distributed stations, which opens the opportunity for the approach to be used in a rapid mode immediately after a major event to provide guidance for, for example tsunami warning for megathrust events.
    Keywords: Seismology
    Print ISSN: 0956-540X
    Electronic ISSN: 1365-246X
    Topics: Geosciences
    Published by Oxford University Press on behalf of The Deutsche Geophysikalische Gesellschaft (DGG) and the Royal Astronomical Society (RAS).
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 5
    Publication Date: 2013-01-11
    Description: The mantle component of the Australian Seismological Reference Model (AuSREM) has been constructed from Australian-specific sources, primarily exploiting the wealth of seismic sources at regional distances around Australia recorded at portable and permanent stations on the continent. AuSREM is designed to bring together the existing information on Australia, from both body wave and surface wave studies and provide a synthesis in the form of a 3-D model that can provide the basis for future refinement. The model is grid based with a 0.5° sampling in latitude and longitude, and is designed to be fully interpolable, so that properties can be extracted at any point. For the upper mantle the primary source of information comes from seismic surface wave tomography, supplemented by analysis of body wave arrivals and regional tomography which provide useful constraints on the relation between P- and S -wave speeds in the mantle lithosphere. A representative model has been developed to capture the features of mantle structure drawing on a range of studies. The mantle structure is represented by grid values at 25 km intervals in depth from 75 to 300 km. Shallower structure is linked to the AuSREM crust through the recent Moho depth model of Kennett et al. , which exploits all available sources of seismological information. Below 300 km depth and in the surrounding area AuSREM is linked to the S40RTS model of Ritsema et al.
    Print ISSN: 0956-540X
    Electronic ISSN: 1365-246X
    Topics: Geosciences
    Published by Oxford University Press on behalf of The Deutsche Geophysikalische Gesellschaft (DGG) and the Royal Astronomical Society (RAS).
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 6
    Publication Date: 2013-01-11
    Description: Stations on the Australian continent receive a rich mixture of continuous ground motion with ambient seismic noise from the surrounding oceans, and numerous small earthquakes in the earthquake belts to the north in Indonesia, and east in Tonga-Kermadec, as well as more distant source zones. The ground motion at a seismic station contains information about the structure in the vicinity of the site, and this can be exploited by applying an autocorrelation procedure to the continuous records. By creating stacked autocorrelograms of the ground motion at a single station, information on crust properties can be extracted in the form of a signal that includes the crustal reflection response convolved with the autocorrelation of the combined effect of source excitation and the instrument response. After applying suitable high-pass filtering, the reflection component can be extracted to reveal the most prominent reflectors in the lower crust, which often correspond to the reflection at the Moho. Because the reflection signal is stacked from arrivals from a wide range of slownesses, the reflection response is somewhat diffuse, but still sufficient to provide useful constraints on the local crust beneath a seismic station. Continuous vertical component records from 223 stations (permanent and temporary) across the continent have been processed using autocorrelograms of running windows 6 hr long with subsequent stacking. A distinctive pulse with a time offset between 8 and 30 s from zero is found in the autocorrelation results, with frequency content between 1.5 and 4 Hz, suggesting P -wave multiples trapped in the crust. Synthetic modelling, with control of multiple phases, shows that a local p m p phase can be recovered with the autocorrelation approach. This identification enables us to make out the depth to the most prominent crustal reflector across the continent. We obtain results that largely conform to those from previous studies using a combination of data from refraction, reflection profiles and receiver functions. This approach can be used for crustal property extraction using just vertical component records, and effective results can be obtained with temporary deployments of just a few months.
    Print ISSN: 0956-540X
    Electronic ISSN: 1365-246X
    Topics: Geosciences
    Published by Oxford University Press on behalf of The Deutsche Geophysikalische Gesellschaft (DGG) and the Royal Astronomical Society (RAS).
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 7
    Publication Date: 2013-11-04
    Description: In many parts of the ocean high-frequency seismic energy is carried to very great distances from the source. The onsets of the P and S energy travel with speeds characteristic of the mantle lithosphere. The complex and elongated waveforms of such Po and So waves and their efficient transport of high frequencies (〉10 Hz) have proved difficult to explain in full. Much of the character can be captured with stratified models, provided a full allowance is made for reverberations in the ocean and the basal sediments. The nature of the observations implies a strong scattering environment. By analysing the nature of the long-distance propagation we are able to identify the critical role played by shallow reverberations in the water and sediments, and the way that these link with propagation in a heterogeneous mantle. 2-D finite difference modelling to 10 Hz for ranges over 1000 km demonstrates the way in which heterogeneity shapes the wavefield, and the way in which the properties of the lithosphere and asthenosphere control the nature of the propagation processes. The nature of the Po and So phases are consistent with pervasive heterogeneity in the oceanic lithosphere with a horizontal correlation length (~10 km) much larger than the vertical correlation length (~0.5 km).
    Print ISSN: 0956-540X
    Electronic ISSN: 1365-246X
    Topics: Geosciences
    Published by Oxford University Press on behalf of The Deutsche Geophysikalische Gesellschaft (DGG) and the Royal Astronomical Society (RAS).
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 8
    Publication Date: 2014-10-21
    Description: This study explores the full 3D earthquake location for the Australian continent, exploiting the recent 3D Australian Seismological Reference Model (AuSREM). Seismic velocities from AuSREM were used as input to precompute finely spaced P- and S-travel-time grids for each station in the Australian National Seismograph Network using the multistage fast marching method. Travel times from anywhere in the grid to the corresponding station can then be computed by interpolation. The location search using these travel times is based on matching observed and computed arrival times using the neighborhood algorithm. All computations involved can be performed in practical time frames on a single processor computer. The performance of the 3D approach relative to location using the 1D global ak135 velocity model was assessed by locating a set of recent earthquakes. The arrival-time residuals for P and S arrivals are significantly smaller when using the 3D AuSREM model. The improvements over ak135 are especially large in the 10 degrees -18 degrees distance range, in which a distance bias is strongly reduced and for those paths where the ak135 residuals are large. A small set of six ground-truth events was used to assess to what extent the reduction in travel-time residuals leads to better absolute location accuracy. The 3D location offset from the ground-truth position is typically half that of the ak135 offset. The patterns of offsets suggest that the already fast mantle wavespeeds in western Australia need to be even faster than in AuSREM.
    Print ISSN: 0037-1106
    Electronic ISSN: 1943-3573
    Topics: Geosciences , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 9
    Publication Date: 2012-01-01
    Print ISSN: 0148-0227
    Electronic ISSN: 2156-2202
    Topics: Geosciences
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 10
    Publication Date: 2012-10-01
    Print ISSN: 0148-0227
    Electronic ISSN: 2156-2202
    Topics: Geosciences
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...