ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

Your search history is empty.
feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    ISSN: 1432-0894
    Source: Springer Online Journal Archives 1860-2000
    Topics: Geosciences , Physics
    Notes: Abstract  Dynamic ice-flow models for 12 glaciers and ice caps have been forced with various climate change scenarios. The volume of this sample spans three orders of magnitude. Six climate scenarios were considered: from 1990 onwards linear warming rates of 0.01, 0.02 and 0.04 K a-1, with and without concurrent changes in precipitation. The models, calibrated against the historic record of glacier length where possible, were integrated until 2100. The differences in individual glacier responses are very large. No straightforward relationship between glacier size and fractional change of ice volume emerges for any given climate scenario. The hypsometry of individual glaciers and ice caps plays an important role in their response, thus making it difficult to generalize results. For a warming rate of 0.04 K a-1, without increase in precipitation, results indicate that few glaciers would survive until 2100. On the other hand, if the warming rate were to be limited to 0.01 K a-1 with an increase in precipitation of 10% per degree warming, we predict that overall loss would be restricted to 10 to 20% of the 1990 volume.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    ISSN: 1432-0894
    Source: Springer Online Journal Archives 1860-2000
    Topics: Geosciences , Physics
    Notes: Abstract.  A two-dimensional vertically integrated ice flow model has been developed to test the importance of various processes and concepts used for the prediction of the contribution of the Greenland ice-sheet to sea-level rise over the next 350 y (short-term response). The mass balance is modelled by the degree-day method and the energy-balance method. The lithosphere is considered to respond isostatically to a point load and the time evolution of the bedrock follows from a viscous asthenosphere. According to the IPCC-IS92a scenario (with constant aerosols after 1990) the Greenland ice-sheet is likely to cause a global sea level rise of 10.4 cm by 2100 AD. It is shown, however, that the result is sensitive to precise model formulations and that simplifications as used in the sea-level projection in the IPCC-96 report yield less accurate results. Our model results indicate that, on a time scale of a hundred years, including the dynamic response of the ice-sheet yields more mass loss than the fixed response in which changes in geometry are not incorporated. It appears to be important to consider sliding, as well as the fact that climate sensitivity increases for larger perturbations. Variations in predicted sea-level change on a time scale of hundred years depend mostly on the initial state of the ice-sheet. On a time scale of a few hundred years, however, the variability in the predicted melt is dominated by the variability in the climate scenarios.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2014-05-05
    Description: The equilibrium (Charney) climate sensitivity, here indicated by Sa, is the equilibrium change in Earth’s global mean surface temperature due to a radiative forcing associated with a doubling of pCO2, the atmospheric CO2 concentration. Although known for decades, little progress has been made in constraining upper and lower limits for climate sensitivity. Originally, Sa was derived from climate models where the atmospheric CO2 concentration is doubled in typically about 100 years. Also palaeo data have been frequently used to determine Sa, and — if slow feedback processes are adequately taken into account — indicate a similar range as those based on climate models used in the IPCC. However, palaeo data usually span a much larger time than the 100 year model experiments. Here, we focus on the last 800 kyr, where climate variability has occurred on time scales ranging from the 100.000- year ice-age cycles to millennial-scale climate variations. The traditional linear and equilibrium concept of climate sensitivity as is applied in typical (short time scale) climate model simulations might not apply to the climate system’s non-stationary and non-linear response to changing forcing. One example is the background state dependency of the fast feedback processes. In this presentation, we assess the dependency of the fast feedback processes on the background climate state using data of the last 800 kyr and a conceptual climate model. Though still (locally) linear, we propose a different approach to estimate climate sensi- tivity which better accounts for a possible state dependency of the fast feedbacks. This approach uses local slopes of temperature versus radiative perturbation and is most suitable for palaeo-data spanning a range of background climate states. We find the specific climate sensitivities generally lower during cold (glacial) than during warm periods. Within the conceptual climate model we further estimate how the background state-dependency of the fast feed- back processes might affect the distributions of feedback factors and projected temperature change when noise is included in the forcing of the model. In particular, we investigate the appearance of small but finite probabili- ties of a very large temperature response and how the shape of the response distribution might be related to state dependency.
    Repository Name: EPIC Alfred Wegener Institut
    Type: Conference , NonPeerReviewed
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
    Publication Date: 2015-04-30
    Description: The concept of a positive feedback between ice flow and enhanced melt rates in a warmer climate fuelled the debate regarding the temporal and spatial controls on seasonal ice acceleration. Here we combine melt, basal water pressure and ice velocity data. Using 20 years of data covering the whole ablation area, we show that there is not a strong positive correlation between annual ice velocities and melt rates. Annual velocities even slightly decreased with increasing melt. Results also indicate that melt variations are most important for velocity variations in the upper ablation zone up to the equilibrium line altitude. During the extreme melt in 2012, a large velocity response near the equilibrium line was observed, highlighting the possibility of meltwater to have an impact even high on the ice sheet. This may lead to an increase of the annual ice velocity in the region above S9 and requires further monitoring.
    Repository Name: EPIC Alfred Wegener Institut
    Type: Article , NonPeerReviewed , info:eu-repo/semantics/article
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 5
    Publication Date: 2015-04-20
    Description: A still open question is how equilibrium warming in response to increasing radiative forcing (equilibrium climate sensitivity S) is depending on background climate. We here bring paleo-data based evidence on the state-dependency of S by using CO2 proxy data together with model-based reconstruction of land ice albedo over the last 5 million years. We find that the land-ice albedo forcing depends non-linearly on the background climate, while any non-linearity of CO2 radiative forcings depends on the CO2 data set used. Over the last 2 million years the combined S_[CO2,LI] from CO2 and land-ice albedo forcing is state-dependent and during interglacials at least twice as high as during glacials, thus CO2 doubling leads to an interglacial warming of 5 K. In the Pliocene data uncertainties prevents a well-supported calculation, but our analysis suggests that S_[CO2,LI] during a land-ice free northern hemisphere was smaller than during interglacials of the Pleistocene.
    Repository Name: EPIC Alfred Wegener Institut
    Type: Conference , NonPeerReviewed
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 6
    Publication Date: 2018-03-15
    Description: A still open question is how equilibrium warming in response to increasing radiative forcing – the specific equilibrium climate sensitivity S – is depending on background climate. We here present paleo-data based evidence on the state-dependency of S, by using CO2 proxy data together with 3-D ice-sheet model-based reconstruction of land ice albedo over the last 5 million years (Myr). We find that the land-ice albedo forcing depends non-linearly on the background climate, while any non-linearity of CO2 radiative forcing depends on the CO2 data set used. This non-linearity was in similar approaches not accounted for due to previously more simplistic approximations of land-ice albedo radiative forcing being a linear function of sea level change. Important for the non-linearity between land-ice albedo and sea level is a latitudinal dependency in ice sheet area changes.In our setup, in which the radiative forcing of CO2 and of the land-ice albedo (LI) is combined, we find a state-dependency in the calculated specific equilibrium climate sensitivity S[CO2 ,LI] for most of the Pleistocene (last 2.1 Myr). During Pleistocene intermediate glaciated climates and interglacial periods S_[CO2,LI] is on average ∼45% larger than during Pleistocene full glacial conditions. In the Pliocene part of our analysis (2.6–5 Myr BP) the CO2 data uncertainties prevents a well-supported calculation for S_[CO2,LI], but our analysis suggests that during times without a large land-ice area in the Northern Hemisphere (e.g. before 2.82MyrBP) the specific equilibrium climate sensitivity S_[CO2,LI] was smaller than during interglacials of the Pleistocene. We thus find support for a previously proposed state-change in the climate system with the wide appearance of northern hemispheric ice sheets. This study points for the first time to a so far overlooked non-linearity in the land-ice albedo radiative forcing, which is important for similar paleo data-based approaches to calculate climate sensitivity. However, the implications of this study for a suggested warming under CO2 doubling are not yet entirely clear since the necessary corrections for other slow feedbacks are in detail unknown and the still existing uncertainties in the ice sheet simulations and global temperature reconstructions are large.
    Repository Name: EPIC Alfred Wegener Institut
    Type: Article , NonPeerReviewed
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 7
    Publication Date: 2018-06-26
    Description: Polar amplification and specific equilibrium climate sensitivity (S) have been the subject of many paleoclimate studies. While earlier studies inferred them as single constant parameters of the climate system, there are now indications that both are conditioned by the type of forcing. Moreover, they might be affected by fast feedback mechanisms that have different strengths depending on the background climate. Here, we use the intermediate complexity climate model CLIMBER-2 to study the influence of land ice and CO2 on polar amplification and S. We perform transient five-million-year simulations, forced by different combinations of insolation, land ice and CO2. We find that land ice and CO2 changes have separate effects on temperature, both on the global mean and the meridional distribution. Land ice changes are mainly manifested in the high latitudes of the Northern Hemisphere. They lead to 77% higher northern polar amplification, 38% lower southern polar amplification, and 42% lower S than homogeneously distributed CO2 changes. Furthermore, towards colder climates northern polar amplification increases, and consequently southern polar amplification decreases, due to the albedo-temperature feedback. As an effect, a global average temperature change calculated from high-latitude temperatures by using a constant polar amplification would lead to errors of up to 0.6 K in our model set-up. We conclude that to constrain feedback strengths and climate sensitivity in climate models by paleoclimate data, the underlying forcing mechanisms and background climate states have to be taken into consideration.
    Repository Name: EPIC Alfred Wegener Institut
    Type: Conference , NonPeerReviewed
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 8
    Publication Date: 2018-05-09
    Description: Polar amplification and paleoclimate sensitivity (S) have been the subject of many paleoclimate studies. While earlier studies inferred them as single constant parameters of the climate system, there are now indications that both are conditioned by the type of forcing. Moreover, they might be affected by fast feedback mechanisms that have different strengths depending on the background climate. Here we use the intermediate complexity climate model CLIMBER‐2 to study the influence of land ice and CO2 on polar amplification and S. We perform transient 5‐Myr simulations, forced by different combinations of insolation, land ice, and CO2. Our results provide evidence that land ice and CO2 changes have different effects on temperature, both on the global mean and the meridional distribution. Land ice changes are mainly manifested in the high latitudes of the Northern Hemisphere. They lead to higher northern polar amplification, lower southern polar amplification, and lower S than more homogeneously distributed CO2 forcing in CLIMBER‐2. Furthermore, toward colder climates northern polar amplification increases and consequently southern polar amplification decreases, due to the albedo‐temperature feedback. As an effect, a global average temperature change calculated from high‐latitude temperatures by using a constant polar amplification would lead to substantial errors in our model setup. We conclude that to constrain feedback strengths and climate sensitivity by paleoclimate data, the underlying forcing mechanisms and background climate states have to be taken into consideration.
    Repository Name: EPIC Alfred Wegener Institut
    Type: Article , NonPeerReviewed
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 9
    Publication Date: 2013-01-24
    Type: paper
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 10
    Publication Date: 2017-10-18
    Description: Efforts to extract a Greenland ice core with a complete record of the Eemian interglacial (130,000 to 115,000 years ago) have until now been unsuccessful. The response of the Greenland ice sheet to the warmer-than-present climate of the Eemian has thus remained unclear. Here we present the new North Greenland Eemian Ice Drilling (‘NEEM’) ice core and show only a modest ice-sheet response to the strong warming in the early Eemian. We reconstructed the Eemian record from folded ice using globally homogeneous parameters known from dated Greenland and Antarctic ice-core records. On the basis of water stable isotopes, NEEM surface temperatures after the onset of the Eemian (126,000 years ago) peaked at 8 ± 4 degrees Celsius above the mean of the past millennium, followed by a gradual cooling that was probably driven by the decreasing summer insolation. Between 128,000 and 122,000 years ago, the thickness of the northwest Greenland ice sheet decreased by 400 ± 250 metres, reaching surface elevations 122,000 years ago of 130 ± 300 metres lower than the present. Extensive surface melt occurred at the NEEM site during the Eemian, a phenomenon witnessed when melt layers formed again at NEEM during the exceptional heat of July 2012. With additional warming, surface melt might become more common in the future.
    Repository Name: EPIC Alfred Wegener Institut
    Type: Article , NonPeerReviewed
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...