ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

Your search history is empty.
feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Publication Date: 2008-11-01
    Description: Synoptic and mesoscale meteorology underwent a revolution in the 1940s and 1950s with the widespread deployment of novel weather observations, such as the radiosonde network and the advent of weather radar. These observations provoked a rapid increase in our understanding of the structure and dynamics of the atmosphere by pioneering analysts such as Fred Sanders. The authors argue that we may be approaching an analogous revolution in our ability to study the structure and dynamics of atmospheric phenomena with the advent of probabilistic objective analyses. These probabilistic analyses provide not only best estimates of the state of the atmosphere (e.g., the expected value) and the uncertainty about this state (e.g., the variance), but also the relationships between all locations and all variables at that instant in time. Up until now, these relationships have been determined by sampling in time by, for example, case studies, composites, and time-series analysis. Here the authors propose a new approach, ensemble synoptic analysis, which exploits the information contained in probabilistic samples of analyses at one or more instants in time. One source of probabilistic analyses is ensemble-based state-estimation methods, such as ensemble-based Kalman filters. Analyses from such a filter may be used to study atmospheric phenomena and the relationships between fields and locations at one or more instants in time. After a brief overview of a research-based ensemble Kalman filter, illustrative examples of ensemble synoptic analysis are given for an extratropical cyclone, including relationships between the cyclone minimum sea level pressure and other synoptic features, statistically determined operators for potential-vorticity inversion, and ensemble-based sensitivity analysis.
    Print ISSN: 0065-9401
    Electronic ISSN: 1943-3646
    Topics: Geography , Geosciences , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2020-07-01
    Description: The National Oceanic and Atmospheric Administration’s (NOAA) Sensing Hazards with Operational Unmanned Technology (SHOUT) project evaluated the ability of observations from high-altitude unmanned aircraft to improve forecasts of high-impact weather events like tropical cyclones or mitigate potential degradation of forecasts in the event of a future gap in satellite coverage. During three field campaigns conducted in 2015 and 2016, the National Aeronautics and Space Administration (NASA) Global Hawk, instrumented with GPS dropwindsondes and remote sensors, flew 15 missions sampling 6 tropical cyclones and 3 winter storms. Missions were designed using novel techniques to target sampling regions where high model forecast uncertainty and a high sensitivity to additional observations existed. Data from the flights were examined in real time by operational forecasters, assimilated in operational weather forecast models, and applied postmission to a broad suite of data impact studies. Results from the analyses spanning different models and assimilation schemes, though limited in number, consistently demonstrate the potential for a positive forecast impact from the observations, both with and without a gap in satellite coverage. The analyses with the then-operational modeling system demonstrated large forecast improvements near 15% for tropical cyclone track at a 72-h lead time when the observations were added to the otherwise complete observing system. While future decisions regarding use of the Global Hawk platform will include budgetary considerations, and more observations are required to enhance statistical significance, the scientific results support the potential merit of the observations. This article provides an overview of the missions flown, observational approach, and highlights from the completed and ongoing data impact studies.
    Print ISSN: 0003-0007
    Electronic ISSN: 1520-0477
    Topics: Geography , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2018-03-13
    Description: African easterly waves (AEWs) are the primary synoptic-scale weather feature found in sub-Saharan Africa during boreal summer, yet there have been few studies documenting the performance of operational ensemble prediction systems (EPSs) for these phenomena. Here, AEW forecasts in the 51-member ECMWF EPS are validated against an average of four operational analyses during two periods of enhanced AEW activity (July–September 2007–09 and 2011–13). During 2007–09, AEW position forecasts were mainly underdispersive and characterized by a slow bias, while intensity forecasts were characterized by an overintensification bias, yet the ensemble-mean errors generally matched the forecast uncertainty. Although 2011–13 position forecasts were still underdispersive with a slow bias, the ensemble-mean error is smaller than for 2007–09. In addition, the 2011–13 intensity forecasts were overdispersive and had a negligible intensity bias. Forecasts from 2007 to 2009 were characterized by higher precipitation in the AEW trough center and high correlations between divergence errors and intensity errors, suggesting the intensity bias is associated with errors in convection. By contrast, forecasts from 2011 to 2013 have smaller precipitation biases than those from 2007 to 2009 and exhibit a weaker correlation between divergence errors and intensity errors, suggesting a weaker connection between AEW forecast errors and convective errors.
    Print ISSN: 0882-8156
    Electronic ISSN: 1520-0434
    Topics: Geography , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
    Publication Date: 2018-01-31
    Description: Understanding and forecasting tropical cyclone (TC) intensity change continues to be a paramount challenge for the research and operational communities, partly because of inherent systematic biases contained in model guidance, which can be difficult to diagnose. The purpose of this paper is to present a method to identify such systematic biases by comparing forecasts characterized by large intensity errors with analog forecasts that exhibit small intensity errors. The methodology is applied to the 2015 version of the Hurricane Weather Research and Forecasting (HWRF) Model retrospective forecasts in the North Atlantic (NATL) and eastern North Pacific (EPAC) basins during 2011–14. Forecasts with large 24-h intensity errors are defined to be in the top 15% of all cases in the distribution that underforecast intensity. These forecasts are compared to analog forecasts taken from the bottom 50% of the error distribution. Analog forecasts are identified by finding the case that has 0–24-h intensity and wind shear magnitude time series that are similar to the large intensity error forecasts. Composite differences of the large and small intensity error forecasts reveal that the EPAC large error forecasts have weaker reflectivity and vertical motion near the TC inner core from 3 h onward. Results over the NATL are less clear, with the significant differences between the large and small error forecasts occurring radially outward from the TC core. Though applied to TCs, this analog methodology could be useful for diagnosing systematic model biases in other applications.
    Print ISSN: 0882-8156
    Electronic ISSN: 1520-0434
    Topics: Geography , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 5
    Publication Date: 2016-07-12
    Description: Medium-range forecasts for Cyclone Joachim, an extratropical cyclone that impacted western Europe on 16 December 2011, consistently predicted a high-impact intense cyclone; however, these forecasts failed to verify. The potential source and propagation of forecast errors for this case are diagnosed from the 51-member European Centre for Medium-Range Forecasts Ensemble Prediction System initialized 5 days prior to the cyclone’s landfall. Ensemble members are subdivided into two groups: one that contained the eight members that had the most accurate forecast of Joachim and, the other, the eight members that predicted the most intense cyclone. Composite differences between these two subgroups indicate that the difference between these forecasts originate in tropopause-based subsynoptic waves along a deep trough in the eastern Pacific. These errors move eastward over a northern stream ridge centered on the west coast of North America and modulate the evolution of a trough that dives equatorward out of Canada and is associated with the development of Joachim. Forecast error calculations and relaxation experiments indicate that reducing forecast errors associated with these subsynoptic features leads to more accurate forecasts. These results present further evidence that subsynoptic errors, especially those originating in the warm sector of a cyclone, can be a significant source of downstream forecast errors.
    Print ISSN: 0882-8156
    Electronic ISSN: 1520-0434
    Topics: Geography , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 6
    Publication Date: 2015-12-11
    Description: The mechanisms responsible for tropical cyclone (TC) intensification in the presence of moderate vertical shear magnitudes are not well understood. To investigate how TCs intensify in spite of moderate shear, this study employed a 96-member ensemble generated with the Advanced Hurricane Weather Research and Forecasting (AHW) Model. In this first part, AHW ensemble forecasts for TC Katia (2011) were evaluated when Katia was a weak tropical storm in an environment of 12 m s−1 easterly shear. The 5-day AHW forecasts for Katia were characterized by large variability in the intensity, presenting an opportunity to compare the underlying mechanisms between two subsets of members that predicted different intensity scenarios: intensification and weakening. The key difference between these two subsets was found in the lower-tropospheric moisture north of Katia (i.e., right-of-shear quadrant). With more water vapor in the lower troposphere, buoyant updrafts helped to moisten the midtroposphere and enhanced the likelihood of deep and organized convection in the subset that predicted intensification. This finding was validated with a vorticity budget, which showed that deep cyclonic vortex stretching and tilting contributed to spinning up the circulation after the midtroposphere had moistened. Sensitivity experiments, in which the initial conditions were perturbed, also demonstrated the importance of lower-tropospheric moisture, which suggests that moisture observations may help reduce uncertainty in forecasts of weak, sheared tropical storms.
    Print ISSN: 0022-4928
    Electronic ISSN: 1520-0469
    Topics: Geography , Geosciences , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 7
    Publication Date: 2016-02-26
    Description: The mechanisms leading to tropical cyclone (TC) intensification amid moderate vertical wind shear can vary from case to case, depending on the vortex structure and the large-scale conditions. To search for similarities between cases, this second part investigates the rapid intensification of Hurricane Ophelia (2011) in an environment characterized by 200–850-hPa westerly shear exceeding 8 m s−1. Similar to Part I, a 96-member ensemble was employed to compare a subset of members that predicted Ophelia would intensify with another subset that predicted Ophelia would weaken. This comparison revealed that the intensification of Ophelia was aided by enhanced convection and midtropospheric moisture in the downshear and left-of-shear quadrants. Enhanced left-of-shear convection was key to the establishment of an anticyclonic divergent outflow that forced a nearby upper-tropospheric trough to wrap around Ophelia. A vorticity budget showed that deep convection also contributed to the enhancement of vorticity within the inner core of Ophelia via vortex stretching and tilting of horizontal vorticity enhanced by the upper-tropospheric trough. These results suggest that TC intensity changes in sheared environments and in the presence of upper-tropospheric troughs highly depend on the interaction between convective-scale processes and the large-scale flow. Given the similarities between Part I and this part, the results suggest that observations from the three-dimensional moisture and wind fields could improve both forecasting and understanding of TC intensification in moderately sheared environments.
    Print ISSN: 0022-4928
    Electronic ISSN: 1520-0469
    Topics: Geography , Geosciences , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 8
    Publication Date: 2016-10-01
    Description: Over the central Great Plains, mid- to upper-tropospheric weather disturbances often modulate severe storm development. These disturbances frequently pass over the Intermountain West region of the United States during the early morning hours preceding severe weather events. This region has fewer in situ observations of the atmospheric state compared with most other areas of the United States, contributing toward greater uncertainty in forecast initial conditions. Assimilation of supplemental observations is hypothesized to reduce initial condition uncertainty and improve forecasts of high-impact weather.During the spring of 2013, the Mesoscale Predictability Experiment (MPEX) leveraged ensemble-based targeting methods to key in on regions where enhanced observations might reduce mesoscale forecast uncertainty. Observations were obtained with dropsondes released from the NSF/NCAR Gulfstream-V aircraft during the early morning hours preceding 15 severe weather events over areas upstream from anticipated convection. Retrospective data-denial experiments are conducted to evaluate the value of dropsonde observations in improving convection-permitting ensemble forecasts. Results show considerable variation in forecast performance from assimilating dropsonde observations, with a modest but statistically significant improvement, akin to prior targeted observation studies that focused on synoptic-scale prediction. The change in forecast skill with dropsonde information was not sensitive to the skill of the control forecast. Events with large positive impact sampled both the disturbance and adjacent flow, akin to results from past synoptic-scale targeting studies, suggesting that sampling both the disturbance and adjacent flow is necessary regardless of the horizontal scale of the feature of interest.
    Print ISSN: 0027-0644
    Electronic ISSN: 1520-0493
    Topics: Geography , Geosciences , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 9
    Publication Date: 2016-09-01
    Description: Tropical cyclone (TC) intensity forecasts are impacted by errors in atmosphere and ocean initial conditions and the model formulation, which motivates using an ensemble approach. This study evaluates the impact of uncertainty in atmospheric and oceanic initial conditions, as well as stochastic representations of the drag Cd and enthalphy Ck exchange coefficients on ensemble Advanced Hurricane WRF (AHW) TC intensity forecasts of multiple Atlantic TCs from 2008 to 2011. Each ensemble experiment is characterized by different combinations of either deterministic or ensemble atmospheric and/or oceanic initial conditions, as well as fixed or stochastic representations of Cd or Ck. Among those experiments with a single uncertainty source, atmospheric uncertainty produces the largest standard deviation in TC intensity. While ocean uncertainty leads to continuous growth in ensemble standard deviation, the ensemble standard deviation in the experiments with Cd and Ck uncertainty levels off by 48 h. Combining atmospheric and oceanic uncertainty leads to larger intensity standard deviation than atmosphere or ocean uncertainty alone and preferentially adds variability outside of the TC core. By contrast, combining Cd or Ck uncertainty with any other source leads to negligible increases in standard deviation, which is mainly due to the lack of spatial correlation in the exchange coefficient perturbations. All of the ensemble experiments are deficient in ensemble standard deviation; however, the experiments with combinations of uncertainty sources generally have an ensemble standard deviation closer to the ensemble-mean errors.
    Print ISSN: 0027-0644
    Electronic ISSN: 1520-0493
    Topics: Geography , Geosciences , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 10
    Publication Date: 2017-08-16
    Print ISSN: 0027-0644
    Electronic ISSN: 1520-0493
    Topics: Geography , Geosciences , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...